Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(5): 364-378, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300138

RESUMO

Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.


Assuntos
Ferroptose , Interleucina-6 , Pulmão , Poli I-C , Receptores Citoplasmáticos e Nucleares , Ferroptose/efeitos dos fármacos , Animais , Poli I-C/farmacologia , Interleucina-6/metabolismo , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacos
2.
J Cell Physiol ; : e31414, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155648

RESUMO

NORSF is a nuclear long noncoding RNA (lncRNA) that contributes to the follicular atresia and restrains 17ß-estradiol (E2) release by granulosa cells (GCs). Importantly, it is also a potential candidate gene in the quantitative trait locus (QTLs) for sow fertility traits. We identified NORSF as a candidate (causal) gene affecting sow fertility traits. A novel G-A variant was discovered at -478 nt of the NORSF promoter and termed as g.-478G>A. Association analysis revealed that this variant was associated with sow fertility traits (e.g., the total number of piglets born, the total number of piglets born alive, and the number of healthy piglets). Mechanistically, the g.-478G>A variant reduced the binding activity of the NORSF promoter to its transcription activator regulatory factor X7 (RFX7), leading to decreased NORSF promoter activity and transcription levels in sow GCs (sGCs), and weakened inhibitory effects on the transcription of CYP19A1, which encodes a rate-limiting enzyme for E2 synthesis and E2 release by sGCs. In addition, RFX7 is transcriptionally activated by P53, which restrains E2 release from sGCs via the RFX7/NORSF/CYP19A1 pathway. These findings indicate that the lncRNA NORSF is a causal gene in QTLs for sow fertility traits and define the P53/NORSF/CYP19A1 pathway as a new signaling pathway affecting sow reproduction, which provides a new target for improving female fertility.

3.
Opt Express ; 32(3): 3606-3618, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297578

RESUMO

In this paper, we present the bit error rate (BER) performance of the underwater wireless optical communication (UWOC) systems using the optical space shift keying (OSSK) on the gamma-gamma turbulent fading channel, which also considers pointing errors and channel estimation errors. Firstly, we develop the new expressions for the probability density function (PDF) based on the Gamma-Gamma distribution with error factors. Subsequently, we analyze the statistical characteristic of the difference in attenuation coefficients between two channels in the OSSK system, by which we provide analytical results for evaluating the average BER performance. The results show that the effective improvement of spectral efficiency (SE) and BER performance is achieved by rationally allocating the number of lasers and detectors in the system. The OSSK-UWOC system performs better when a narrow beam waist is used. Furthermore, the presence of channel estimation error brings the BER performance advantage to the system, and the system with a high channel estimation error (ρ = 0.7) shows a 4 dB improvement in signal-to-noise ratio (SNR) gain compared to the system with a low channel estimation error (ρ = 0.95). The findings in this paper can be used for the UWOC system design.

4.
Opt Express ; 32(3): 3874-3890, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297599

RESUMO

This paper investigates the propagation of Gaussian array beams (GABs) through seawater-to-air in the presence of oceanic turbulence, atmospheric turbulence, and wave foams. Specifically, we focus on the intensity distribution of diverse typical GAB structures (ring, multi-ring, and rectangle). Then, an innovative intensity analysis model to calculate the average intensity in each medium is proposed. Moreover, we experimentally verify the proposed method by examining the intensity fading characteristic of Gaussian beams in the seawater-to-air path. Our results show that the peak intensity is primarily affected by the refraction in the ocean and foam layer, rather than air layer. The difference of theoretical and experimental values are less than 0.13 for the peak intensity. Moreover, the intensity distributions are more significantly affected by ocean turbulence but less influenced by wind speed.

5.
J Clin Gastroenterol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869961

RESUMO

OBJECTIVES: As a GABAB receptor agonist, baclofen has demonstrated efficacy in alleviating symptoms of refractory gastroesophageal reflux disease (r-GERD). This meta-analysis aims to evaluate the safety and effectiveness of baclofen as an add-on therapy for this condition. METHOD: We conducted a comprehensive search of the PubMed, Embase, and Web of Science databases for studies published up until October 2023. Subsequently, we performed a meta-analysis encompassing all eligible trials. RESULTS: From 719 records, 10 studies were included, most of these studies were moderate risk. The findings demonstrated that the addition of baclofen as a supplementary treatment effectively improves symptoms (GERD Q score) in r-GERD (standardized mean difference=-0.78, 95% CI: -1.06 to -0.51, I2=0%). The addition of this treatment also resulted in a decrease in the frequency of nonacidic reflux episodes (standardized mean difference=-0.93, 95% CI: -1.49 to -0.37, I2=63%) and an improvement in DeMeester scores (standardized mean difference=-0.82, 95% CI: -1.61 to -0.04, I2=81%) among patients with r-GERD when compared with the use of proton pump inhibitor (PPI) drugs alone. However, no significant disparity was observed in terms of reducing acid reflux episodes (standardized mean difference=-0.12, 95% CI: -0.49 to 0.19, I2=0%) and proximal reflux (standardized mean difference=-0.47, 95% CI: -1.08 to 0.14, I2=60%). CONCLUSION: Baclofen as an add-on treatment can effectively improve the symptoms of patients with r-GERD and reduce the incidence of nonacidic reflux and improve DeMeester score. However, long-term use of baclofen leads to an increased incidence of side effects and is not effective in reducing the occurrence of acid reflux.

6.
Ecotoxicol Environ Saf ; 276: 116319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615642

RESUMO

Di-hexyl phthalate (2-ethylhexyl) (DEHP) has been confirmed to cause female reproductive toxicity in humans and model animals by affecting the survival of ovarian granulosa cells (GCs), but the interrelationships between DEHP's on autophagy, apoptosis, and inflammation in GCs are not clear. Our previous study demonstrated that DEHP exposure resulted in the disturbance of intestinal flora associated with serum LPS release, which in turn led to impaired ovarian function. LPS has also been shown to determine cell fate by modulating cellular autophagy, apoptosis, and inflammation. Therefore, this study investigated the role and link between LPS and autophagy, apoptosis, and inflammation of GCs in DEHP-induced ovarian injury. Here, we constructed an in vivo injury model by continuous gavage of 0-1500 mg/kg of DEHP in female mice for 30 days and an in vitro injury model by treatment of human ovarian granulosa cells (KGN) cells with mono-2- ethylhexyl ester (MEHP, an active metabolite of DEHP in vivo). In addition, the expression of relevant pathway molecules was detected by immunohistochemistry, immunofluorescence, qRT-PCR, and Western blotting after the addition of the autophagy inhibitor 3-methyladenine (3-MA), the apoptosis inhibitor Z-VAD- FMK and the NF-κB inhibitor BAY11-7082. The current study found that autophagy and apoptosis were significantly activated in GCs of DEHP-induced atretic follicles in vivo and found that MEHP-induced KGN cells autophagy and apoptosis were independent and potentially cytotoxic of each other in vitro. Further studies confirmed that DEHP exposure resulted in LPS release from the intestinal tract and entering the ovary, thereby participating in DEHP-induced inflammation of GCs. In addition, we found that exogenous LPS synergized with MEHP could activate the NF-κB signaling pathway to induce inflammation and apoptosis of GCs in a relatively prolonged exposure condition. Meanwhile, inhibition of inflammatory activation could rescue apoptosis and estrogen secretion function of GCs induced by MEHP combined with LPS. These results indicated that the increased LPS influenced by DEHP might cooperate with MEHP to induce inflammatory apoptosis of GCs, an important cause of ovarian injury in mice.


Assuntos
Apoptose , Autofagia , Dietilexilftalato , Dietilexilftalato/análogos & derivados , Células da Granulosa , Inflamação , Lipopolissacarídeos , Feminino , Animais , Dietilexilftalato/toxicidade , Autofagia/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/patologia , Lipopolissacarídeos/toxicidade , Apoptose/efeitos dos fármacos , Camundongos , Inflamação/induzido quimicamente , Inflamação/patologia , Reprodução/efeitos dos fármacos , Humanos
7.
J Environ Manage ; 367: 121944, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067337

RESUMO

The identification of biofilm growth footprints influencing on the biofilm detachment and breakup can advance research into how biofilms form. Thus, a gravity-driven ceramic membrane bioreactor (GDCMBR) was used to investigate the growth, detachment and breakup of biofilm using rainwater pretreated by electrocoagulation under 70-days continuous operation. The in-situ ultrasonic time-domain reflectometry (UTDR) technique was applied to non-invasively determine the biofilm thickness. Initially, the biofilm was slowly thickening, but it would collapse and became thinner after accumulating to a certain level, and then it thickened again in a later period, following a cyclic pattern of 'thickening - collapsing - thickening'. This is because the biofilm growth is related with the accumulation of flocs, however, excessive floc formation results in the biofilm being overweight till reaching the thickness limit and thus collapsing. Subsequently, the biofilm gradually thickens again due to the floc production and continuous deposition. Although the biofilm was dynamically changing, the water quality of treatment of the biofilm always remained stable. Ammonia nitrogen and total phosphorus have been almost completely removed, while CODMn removal efficiency was around 25%. And total bacteria amount in the membrane concentrate was obviously higher than that in the influent with the greater microbial activity, demonstrating the remarkable enrichment effect on bacteria. The understanding of biofilm growth characteristic and footprint identification enables us to develop rational approaches to control biofilm structure for efficient GDCMBR performance and operation lifespan.


Assuntos
Biofilmes , Reatores Biológicos , Cerâmica , Purificação da Água/métodos , Chuva , Membranas Artificiais , Fósforo
8.
J Environ Manage ; 353: 120191, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38325286

RESUMO

The daily discharge of rural sewage in China occupies 30 % of the national wastewater discharge, and developing an energy-efficient, easy to operate, and decentralized rural sewage treatment technology becomes an important task. In this work, a novel rural sewage treatment technology, Electrocoagulation enhanced Gravity-Driven Membrane Bioreactor (EC-GDMBR) was exploited for the rural sewage treatment under long-term operation (160 days). Two EC-GDMBRs with various module structures of ceramic membrane (horizontal module and side module) not only displayed the desirable effluent quality, but also sustained the stable flux (8-13 LMH). The electrocoagulation, electrooxidation, biodegradation, and separation in EC-GDMBRs were able to synergistically remove the particle matter, organic (CODCr effluent <11.6 ± 1.2 mg/L) and nutrients (NH3-N effluent <0.1 mg/L, TN effluent <8.5 mg/L, TP effluent <0.05 mg/L). Besides, the high permeability of ceramic membrane and large porosity of biofilm on its surface improved the sustainability of stable flux during the long-term operation. Moreover, by analyzing bacterial abundance, Extracellular Polymeric Substances, Adenosine Tri-Phosphate and Confocal Laser Scanning Microscopy, a large number of microorganisms grew and accumulated on the carrier, as well as formed the biofilm (23.46-659.9 µm), while Nitrobacteria (1.6-4.1 %) and Nitrate (0.01-0.06 %) exited in the carrier biofilms, promoting the nitrogen removal. Compared with EC-GDMBR with side module of ceramic membrane, EC-GDMBR with horizontal module of ceramic membrane has advantages in flux behavior, organic/nutrient removal, microbial abundance/activity, abundance of nitrogen removal functional bacteria and water permeability of biofilm, because the ceramic membrane of horizontal module can promote the uniform growth of biofilm and improve the uniformity of flow penetration distribution. In general, the findings of this work verify the reliability of EC-GDMBR for the sustainable operation of wastewater treatment and improve its application value of rural sewage treatment.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Reprodutibilidade dos Testes , Membranas Artificiais , Reatores Biológicos , Nitrogênio/metabolismo , Bactérias/metabolismo
9.
Angew Chem Int Ed Engl ; 63(11): e202319211, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38198190

RESUMO

Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.

10.
Angew Chem Int Ed Engl ; : e202411845, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031481

RESUMO

Chemically self-recharging zinc ion batteries (ZIBs), which are capable of auto-recharging in ambient air, are promising in self-powered battery systems. Nevertheless, the exclusive reliance on chemical energy from oxygen for ZIBs charging often would bring some obstacles in charging efficiency. Herein, we develop photo-assisted chemically self-recharging aqueous ZIBs with a heterojunction of MoS2/SnO2 cathode, which are favorable to enhancing both the charging and discharging efficiency as well as the chemical self-charging capabilities under illumination. The photo-assisted process promotes the electron transfer from MoS2/SnO2 to oxygen, accelerating the occurrence of the oxidation reaction during chemical self-charging. Furthermore, the electrons within the MoS2/SnO2 cathode exhibit a low transfer impedance under illumination, which is beneficial to reducing the migration barrier of Zn2+ within the cathode and thereby facilitating the uniform inserting of Zn2+ into MoS2/SnO2 cathode during discharging. This photo-assisted chemical self-recharging mechanism enables ZIBs to attain a maximum self-charging potential of 0.95 V within 3 hours, a considerable self-charging capacity of 202.5 mAh g-1 and excellent cycling performance in a self-charging mode. This work not only provides a route for optimizing chemical self-charging energy storage, but also broadens the potential application of aqueous ZIBs.

11.
Front Genet ; 15: 1378026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798702

RESUMO

Osteoporosis, as a chronic metabolic bone disease, has the characteristic of insidious disease progression, which often leads to relatively delayed disease diagnosis. Therefore, early screening for osteoporosis has become a major public health challenge. The latest research indicates that circRNA is widely involved in the regulation of bone metabolism and is closely related to the occurrence and development of osteoporosis. Based on its high degree of sequence conservation and stability, circRNA has the potential to become a new clinical biomarker. The study of biomarkers is generally based on body fluid samples or adjacent tissue samples, with blood being the most commonly used, which can be divided into sources such as serum, plasma, peripheral blood monocytes, and plasma exosomes. Therefore, this article aims to review the research status of circRNA as a biomarker of osteoporosis.

12.
Sci Total Environ ; 924: 171553, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458443

RESUMO

In coastal areas, the surface water has been simultaneously exposed to the algae blooms caused by eutrophication and the microplastics (MPs) pollution originating from active human activities. As a practical alternative to address these issues in drinking water plant, coagulation-ultrafiltration combined process is still confronted with the limited understanding about the comprehensive effects of MPs on algae-laden surface water (ASW) treatment. Considering the migration of MPs in nature environment and drinking water treatment process, this study first aims to systematically investigate the influence of MPs on algae cultivation, coagulation performance and membrane fouling development. The results of algae cultivation indicate that MPs stimulated the algae activity by 58 % and then constantly suppressed the secretion of protein-like, humic-like and polysaccharide-like metabolites. The variation of particle size distribution and zeta potential confirm that MPs acted as nuclei to facilitate the development of large coagulation flocs with an increasing average size from 82.6 µm to 107.6 µm, during which the negatively charged pollutants were neutralized and removed from ASW. According to the SEM images, MPs could destroy the structure of fouling layer on 50 kDa membranes during the filtration of ASW coagulation effluent. Its synergistic effect with the enhanced coagulation performance and the suppressed EOM secretion contributed to the alleviation of membrane fouling caused by overlapped large-sized foulants. However, the interaction between the enriched organic foulants by MPs and the deposited coagulants on 300 kDa membranes facilitated the development of cake layer, leading to the deterioration of membrane permeability. This study emphasizes the importance in concerning the existence of MPs during the treatment of ASW by coagulation-ultrafiltration combined process and their exact influence in water purification efficiency.


Assuntos
Água Potável , Purificação da Água , Humanos , Ultrafiltração/métodos , Microplásticos , Plásticos , Membranas Artificiais , Purificação da Água/métodos
13.
Gene ; 897: 148089, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123003

RESUMO

Selection of optimal reference genes (RGs) is fundamental for functional genomics studies and gene expression analysis, which are two main approaches to identify functional genes and their expression patterns. However, no systematic study has identified the suitable RGs in porcine ovarian granulosa cells (GCs) which are essential for follicle fate and sow fertility. In this study, the expression profiles of 12 widely-used RGs (GAPDH, RPLP0, ACTB, TUBA1B, EIF3K, PPIA, ATP5F1, B2M, HPRT1, UBC, RPS3, and EEF1A1) in porcine GCs during follicular development and under different abiotic stresses were systematically investigated. Expression stability of the candidate RGs were comprehensively accessed by five statistical algorithms including ΔCt, NormFinder, BestKeeper, geNorm, and RefFinder, indicating that RPS3 and PPIA are the optimal RGs during follicular development, EEF1A1 and RPLP0 are most stable under oxidative stress and inflammation, while ATP5F1, B2M, and RPS3 have higher stability under starvation and heat stress. Notably, the most commonly used RGs (ACTB, GAPDH, and TUBA1B) exhibited low stability in GCs. Reliability of stable RGs was verified by RT-qPCR and showed that selection of the stable RGs significantly improved the detection accuracy of qPCR, which confirms once again that the stability of RGs should not be taken for granted. Our findings identified optimal RG sets in porcine GCs under different conditions, which is helpful in future studies to accurately identify the key regulators and their expression patterns during follicular development in sows.


Assuntos
Perfilação da Expressão Gênica , Inflamação , Animais , Suínos/genética , Feminino , Reprodutibilidade dos Testes , Algoritmos , Células da Granulosa , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
14.
Adv Sci (Weinh) ; : e2404747, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120076

RESUMO

Sow fertility is an economically important quantitative trait. Hundreds of quantitative trait loci (QTLs) containing tens of thousands of potential candidate genes are excavated. However, among these genes, non-coding RNAs including long non-coding RNAs (lncRNAs) are often overlooked. Here, it is reported that NORSF is a novel causal lncRNA for sow fertility traits in QTLs. QTLs are characterized for sow fertility traits at the genome-wide level and identified 4,630 potential candidate lncRNAs, with 13 differentially expressed during sow follicular atresia. NORSF, a lncRNA that involved in sow granulosa cell (sGC) function, is identified as a candidate gene for sow fertility traits as a G to A transversion at 128 nt in its transcript is shown to be markedly associated with sow fertility traits. Mechanistically, after forming the RNA:dsDNA triplexes with the promoter of Caspase8, NORSF transcript with allele G binds to an RNA-binding protein (RBP) NR2C1 and recruits it to the promoter of Caspase8, to induce Caspase8 transcription in sGCs. Functionally, this leads to a loss of inducing effect of NORSF on sGC apoptosis by inactivating the death receptor-mediated apoptotic pathway. This study identified a novel causal lncRNA that can be used for the genetic improvement of sow fertility traits.

15.
Huan Jing Ke Xue ; 45(2): 862-872, 2024 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-38471925

RESUMO

Calcium-containing biochar (ES-BC) was prepared by pyrolyzing eggshell and kitchen wastes, and the ES-BC composite was used to remove phosphate (marked as ES-BC/P). Based on the high affinity of phosphate and carbonate to lead, the ES-BC/P was then used to remove lead from the water. The results showed that, in the appropriate dosage, ES-BC/P could remove lead efficiently at different initial concentrations (1-100 mg·L-1), and the removal efficiency could reach to 99%. Meanwhile, the release of phosphorus could be ignored after the reaction. As ES-BC/P was alkaline, and the lead-containing solution was weakly acidic, the addition of ES-BC/P could adjust the pH of the system automatically. The reaction kinetics and isotherm experiments showed that the lead removal by ES-BC/P was mainly monolayer chemisorption with a maximum adsorption capacity of 493.12 mg·g-1 (318 K). The characterization results showed that lead was mainly removed through the ion exchanges of Pb2+ in the solution with Ca2+ in ES-BC/P. Then, the Pb2+ combined with CO32- and PO42- to form many precipitates, including Pb5(PO4)3OH, Pb10(PO4)6(OH)2, PbCO3, and Pb3(CO3)2(OH)2. In summary, the ES-BC/P material could achieve the efficient removal of lead from the water, thereby realizing the resource utilization of the wastes.

16.
Environ Pollut ; 345: 123423, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307242

RESUMO

The surface water in coastal areas involving algae, is often affected by saline and emerging contaminants caused by saltwater intrusion, and expanding aquaculture industry. Therefore, it is necessary to conduct studies to address the issues that affect ecological safety and health of aquatic environments. This study presents the development of an enhanced electrooxidation/electrocoagulation-ultrafiltration (EO/EC-UF) membrane process using S2O42- (DTN@EO/EC-UF) for the treatment of saline water containing algae. Our results have shown that significant removal of NH3-N (95.1 %), UV254 (89.4 %) and algae (75.7 %) was achieved with the addition of S2O42- (DTN). Additionally, an optimal DTN dosage of 40 mg/L was used in the DTN@EO/EC process to enhance water purification, utilizing reactive species such as SO4·- and ·OH. After coupling with the ultrafiltration (UF) process, optimal operating conditions (DTN: 40 mg/L, current density: 4.65 mA/cm2, electrolysis: 60 s) were applied to treat the saline algae-containing surface water. The generated free chlorine, including NHCl2, accounted for approximately 22 % (0.14 mg/L). In addition, DTN significantly improved the ceramic membrane's permeability and anti-fouling characteristics, with a maximum increasing specific flux from 0.76 to 0.93, mainly attributing to the reduced the irreversible fouling resistance. Furthermore, we discovered that common membrane cleaning using acid or base enhanced the DTN@EO/EC-UF process. In conclusion, this study established an innovative DTN@EO/EC-UF process with excellent performance in terms of water purification and membrane self-cleaning. The results provided a promising alternative for treating saline algae-containing surface water.


Assuntos
Racepinefrina , Sulfatos , Purificação da Água , Eletrocoagulação , Membranas Artificiais , Permeabilidade , Ultrafiltração , Purificação da Água/métodos , Oxirredução
17.
J Zhejiang Univ Sci B ; 25(4): 307-323, 2024 Apr 15.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38584093

RESUMO

Microplastics (MPs) and nanoplastics (NPs) have become hazardous materials due to the massive amount of plastic waste and disposable masks, but their specific health effects remain uncertain. In this study, fluorescence-labeled polystyrene NPs (PS-NPs) were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo. Interestingly, whole-body imaging found that PS-NPs accumulated in the testes of mice. Therefore, the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice, and their mechanisms, were investigated. After oral exposure to PS-NPs, their spermatogenesis was affected and the spermatogenic cells were damaged. The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing (RNA-seq) to determine the toxic mechanisms; a ferroptosis pathway was found after PS-NP exposure. The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1 (Fer-1), and it was also found that nuclear factor erythroid 2-related factor 2 (Nrf2) played an important role in spermatogenic cell ferroptosis induced by PS-NPs. Finally, it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity. This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.


Assuntos
Ferroptose , Nanopartículas , Poluentes Químicos da Água , Animais , Masculino , Camundongos , Microplásticos , Fator 2 Relacionado a NF-E2 , Plásticos/toxicidade , Poliestirenos/toxicidade , Reprodução
18.
Toxicol In Vitro ; 100: 105893, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002813

RESUMO

BACKGROUND: Polystyrene nanoplastics (PS-NPs), are ubiquitous pollution sources in human environments, posing significant biosafety and health risks. While recent studies, including our own, have illustrated that PS-NPs can breach the blood-testis barrier and impact germ cells, there remains a gap in understanding their effects on specific spermatogenic cells such as spermatocytes. METHODS AND RESULTS: Herein, we employed an integrated approach encompassing phenotype, metabolomics, and transcriptomics analyses to assess the molecular impact of PS-NPs on mouse spermatocyte-derived GC-2spd(ts) cells. Optimal exposure conditions were determined as 24 h with 50 nm PS-NPs at 12.5 µg/mL and 90 nm PS-NPs at 50 µg/mL for subsequent multi-omics analysis. Our findings revealed that PS-NPs significantly influenced proliferation and viability, causing alterations in transcriptome and metabolome profiles. Transcriptomics analysis of GC-2spd(ts) cells exposed to PS-NPs indicated the pivotal involvement of cell proliferation and cycle, autophagy, ferroptosis, and redox reaction pathways in PS-NP-induced effects on the proliferation and viability of GC-2spd(ts) cells. Furthermore, metabolomics analysis identified major changes in amino acid metabolism, cyanoamino acid metabolism, and purine and pyrimidine metabolism following PS-NP exposure. CONCLUSION: Our integrated approach, combining metabolomics and transcriptomics profiles with phenotype data, enhances our understanding of the adverse effects of PS-NPs on germ cells.

19.
Environ Pollut ; 357: 124405, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38906409

RESUMO

Offshore aquaculture's explosive growth improves the public food chain while also unavoidably adding new pollutants to the environment. Consequently, the protection of coastal marine eco-systems depends on the efficient treatment of wastewater from marine aquaculture. For the sulfamethazine (SMZ) of representative sulfonamides and total organic pollutants removal utilizing in-situ high salinity, this work has established an inventive and systematic treatment process coupled with iron-electrode electrochemical and ultrafiltration. Additionally, the activated dithionite (DTN) was being used in the electrochemical and ultrafiltration processes with electricity/varivalent iron (FeII/FeIII) and ceramic membrane (CM), respectively, indicated by the notations DTN@iron-electrode/EO-CM. Quenching experiments and ESR detection have identified plenty of reactive species including SO4·-, ·OH, 1O2, and O2·-, for the advanced treatment. In addition, the mass spectrometry (MS) and the Gaussian simulation calculation for these primary reaction sites revealed the dominate SMZ degradation mechanisms, including cleavage of S-N bond, hydroxylation, and Smile-type rearrangement in DTN@iron-electrode/EO process. The DTN@iron-electrode/EO effluent also demonstrated superior membrane fouling mitigation in terms of the CM process, owing to its higher specific flux. XPS and SEM confirmed the reducing membrane fouling, which showed the formation of a loose and porous cake layer. This work clarified diverse reactive species formation and detoxification with DTN@iron-electrode/EO system and offers a sustainable and efficient process for treating tailwater from coastal aquaculture.


Assuntos
Aquicultura , Cerâmica , Ferro , Oxirredução , Sulfametazina , Águas Residuárias , Poluentes Químicos da Água , Aquicultura/métodos , Poluentes Químicos da Água/química , Cerâmica/química , Águas Residuárias/química , Ferro/química , Sulfametazina/química , Eletrodos , Eliminação de Resíduos Líquidos/métodos , Membranas Artificiais , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação
20.
J Hazard Mater ; 474: 134827, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850953

RESUMO

In our work, a gravity-driven ceramic membrane bioreactor (GDCMBR) was developed to remove Mn2+ and NH3-N simultaneously through the birnessite water purification layer in-situ construction on the ceramic membrane due to chemical pre-oxidation (powdered activated carbon (PAC)-MnOx). Considering the trade-off of biofouling and water production, the daily intermittent short-term vertical aeration mode was involving to balance this contradiction with the excellent water purification and improved membrane permeability. And the GDCMBR permeability of operation flux was improved for 5-7 LHM with intermittent short-term vertical aeration. Furthermore, only ∼7 % irreversible membrane resistance (Rir) also confirmed the improved membrane permeability with intermittent short-term vertical aeration. And some manganese oxidizing bacteria (MnOB) and ammonia oxidizing bacteria (AOB) species at genus level were identified during long-term operation with the contact circulating flowing raw water, resulting in the better Mn2+ and NH3-N removal efficiency. Additionally, the nano-flower-like birnessite water purification layer was verified in ceramsite@PAC-MnOx coupled GDCMBR, which evolute into a porous flake-like structure with the increasing intermittent short-term aeration duration. Therefore, the sustainable and effective intermittent short-term aeration mode in ceramsite@PAC-MnOx coupled GDCMBR could improve the membrane permeability with the satisfactory groundwater purification efficiency, as well as providing an energy-efficient strategy for membrane technologies applications in water supply safety.


Assuntos
Amônia , Cerâmica , Manganês , Membranas Artificiais , Permeabilidade , Cerâmica/química , Manganês/química , Amônia/química , Amônia/metabolismo , Purificação da Água/métodos , Reatores Biológicos , Carvão Vegetal/química , Óxidos/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Nitrogênio/química , Nitrogênio/metabolismo , Compostos de Manganês/química , Gravitação , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA