Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 726
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571432

RESUMO

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Catecóis/metabolismo , Microscopia Crioeletrônica , Fenoldopam/química , Fenoldopam/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Multimerização Proteica , Receptores de Dopamina D1/química , Receptores de Dopamina D1/ultraestrutura , Receptores de Dopamina D2/metabolismo , Homologia Estrutural de Proteína
2.
Cell ; 177(5): 1243-1251.e12, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080070

RESUMO

The crystal structure of the ß2-adrenergic receptor (ß2AR) bound to the G protein adenylyl cyclase stimulatory G protein (Gs) captured the complex in a nucleotide-free state (ß2AR-Gsempty). Unfortunately, the ß2AR-Gsempty complex does not provide a clear explanation for G protein coupling specificity. Evidence from several sources suggests the existence of a transient complex between the ß2AR and GDP-bound Gs protein (ß2AR-GsGDP) that may represent an intermediate on the way to the formation of ß2AR-Gsempty and may contribute to coupling specificity. Here we present a structure of the ß2AR in complex with the carboxyl terminal 14 amino acids from Gαs along with the structure of the GDP-bound Gs heterotrimer. These structures provide evidence for an alternate interaction between the ß2AR and Gs that may represent an intermediate that contributes to Gs coupling specificity.


Assuntos
Adenilil Ciclases/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Receptores Adrenérgicos beta 2/química , Humanos , Relação Estrutura-Atividade
3.
Cell ; 177(5): 1232-1242.e11, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080064

RESUMO

The activation of G proteins by G protein-coupled receptors (GPCRs) underlies the majority of transmembrane signaling by hormones and neurotransmitters. Recent structures of GPCR-G protein complexes obtained by crystallography and cryoelectron microscopy (cryo-EM) reveal similar interactions between GPCRs and the alpha subunit of different G protein isoforms. While some G protein subtype-specific differences are observed, there is no clear structural explanation for G protein subtype-selectivity. All of these complexes are stabilized in the nucleotide-free state, a condition that does not exist in living cells. In an effort to better understand the structural basis of coupling specificity, we used time-resolved structural mass spectrometry techniques to investigate GPCR-G protein complex formation and G-protein activation. Our results suggest that coupling specificity is determined by one or more transient intermediate states that serve as selectivity filters and precede the formation of the stable nucleotide-free GPCR-G protein complexes observed in crystal and cryo-EM structures.


Assuntos
Proteínas de Ligação ao GTP/química , Complexos Multienzimáticos/química , Receptores Acoplados a Proteínas G/química , Animais , Bovinos , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Complexos Multienzimáticos/ultraestrutura , Estrutura Quaternária de Proteína , Ratos
4.
Cell ; 169(3): 407-421.e16, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431242

RESUMO

The phosphorylation of agonist-occupied G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) functions to turn off G-protein signaling and turn on arrestin-mediated signaling. While a structural understanding of GPCR/G-protein and GPCR/arrestin complexes has emerged in recent years, the molecular architecture of a GPCR/GRK complex remains poorly defined. We used a comprehensive integrated approach of cross-linking, hydrogen-deuterium exchange mass spectrometry (MS), electron microscopy, mutagenesis, molecular dynamics simulations, and computational docking to analyze GRK5 interaction with the ß2-adrenergic receptor (ß2AR). These studies revealed a dynamic mechanism of complex formation that involves large conformational changes in the GRK5 RH/catalytic domain interface upon receptor binding. These changes facilitate contacts between intracellular loops 2 and 3 and the C terminus of the ß2AR with the GRK5 RH bundle subdomain, membrane-binding surface, and kinase catalytic cleft, respectively. These studies significantly contribute to our understanding of the mechanism by which GRKs regulate the function of activated GPCRs. PAPERCLIP.


Assuntos
Quinase 5 de Receptor Acoplado a Proteína G/química , Mamíferos/metabolismo , Receptores Adrenérgicos beta 2/química , Animais , Camelídeos Americanos , Bovinos , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Espectrometria de Massas , Microscopia Eletrônica , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Ratos , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547056

RESUMO

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Assuntos
Amoeba , Linhagem Celular Tumoral , Movimento Celular , Fenômenos Físicos
6.
Nat Chem Biol ; 20(1): 74-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37580554

RESUMO

G-protein-coupled receptors (GPCRs) are a class of integral membrane proteins that detect environmental cues and trigger cellular responses. Deciphering the functional states of GPCRs induced by various ligands has been one of the primary goals in the field. Here we developed an effective universal method for GPCR cryo-electron microscopy structure determination without the need to prepare GPCR-signaling protein complexes. Using this method, we successfully solved the structures of the ß2-adrenergic receptor (ß2AR) bound to antagonistic and agonistic ligands and the adhesion GPCR ADGRL3 in the apo state. For ß2AR, an intermediate state stabilized by the partial agonist was captured. For ADGRL3, the structure revealed that inactive ADGRL3 adopts a compact fold and that large unusual conformational changes on both the extracellular and intracellular sides are required for activation of adhesion GPCRs. We anticipate that this method will open a new avenue for understanding GPCR structure‒function relationships and drug development.


Assuntos
Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G , Modelos Moleculares , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Ligantes
7.
Proc Natl Acad Sci U S A ; 120(11): e2214324120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36881626

RESUMO

Chemerin is a processed protein that acts on G protein-coupled receptors (GPCRs) for its chemotactic and adipokine activities. The biologically active chemerin (chemerin 21-157) results from proteolytic cleavage of prochemerin and uses its C-terminal peptide containing the sequence YFPGQFAFS for receptor activation. Here we report a high-resolution cryo-electron microscopy (cryo-EM) structure of human chemerin receptor 1 (CMKLR1) bound to the C-terminal nonapeptide of chemokine (C9) in complex with Gi proteins. C9 inserts its C terminus into the binding pocket and is stabilized through hydrophobic interactions involving its Y1, F2, F6, and F8, as well as polar interactions between G4, S9, and several amino acids lining the binding pocket of CMKLR1. Microsecond scale molecular dynamics simulations support a balanced force distribution across the whole ligand-receptor interface that enhances thermodynamic stability of the captured binding pose of C9. The C9 interaction with CMKLR1 is drastically different from chemokine recognition by chemokine receptors, which follow a two-site two-step model. In contrast, C9 takes an "S"-shaped pose in the binding pocket of CMKLR1 much like angiotensin II in the AT1 receptor. Our mutagenesis and functional analyses confirmed the cryo-EM structure and key residues in the binding pocket for these interactions. Our findings provide a structural basis for chemerin recognition by CMKLR1 for the established chemotactic and adipokine activities.


Assuntos
Adipocinas , Quimiocinas , Receptores de Quimiocinas , Humanos , Membrana Celular , Quimiocinas/metabolismo , Microscopia Crioeletrônica , Receptores de Quimiocinas/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(30): e2216329120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37478163

RESUMO

To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.


Assuntos
Dinoprostona , Transdução de Sinais , Dinoprostona/metabolismo , Transdução de Sinais/fisiologia , Receptores de Prostaglandina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hormônios , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo
9.
Dev Biol ; 510: 8-16, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403101

RESUMO

Physiological root resorption is a common occurrence during the development of deciduous teeth in children. Previous research has shown that the regulation of the inflammatory microenvironment through autophagy in DDPSCs is a significant factor in this process. However, it remains unclear why there are variations in the autophagic status of DDPSCs at different stages of physiological root resorption. To address this gap in knowledge, this study examines the relationship between the circadian clock of DDPSCs, the autophagic status, and the periodicity of masticatory behavior. Samples were collected from deciduous teeth at various stages of physiological root resorption, and DDPSCs were isolated and cultured for analysis. The results indicate that the circadian rhythm of important autophagy genes, such as Beclin-1 and LC3, and the clock gene REV-ERBα in DDPSCs, disappears under mechanical stress. Additionally, the study found that REV-ERBα can regulate Beclin-1 and LC3. Evidence suggests that mechanical stress is a trigger for the regulation of autophagy via REV-ERBα. Overall, this study highlights the importance of mechanical stress in regulating autophagy of DDPSCs via REV-ERBα, which affects the formation of the inflammatory microenvironment and plays a critical role in physiological root resorption in deciduous teeth.


Assuntos
Relógios Circadianos , Reabsorção da Raiz , Criança , Humanos , Reabsorção da Raiz/genética , Proteína Beclina-1/genética , Ritmo Circadiano/genética , Células-Tronco , Dente Decíduo
10.
EMBO Rep ; 24(12): e57828, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37971847

RESUMO

Microbial products, such as lipopolysaccharide (LPS), can elicit efficient innate immune responses against invading pathogens. However, priming with LPS can induce a form of innate immune memory, termed innate immune "tolerance", which blunts subsequent NF-κB signaling. Although epigenetic and transcriptional reprogramming has been shown to play a role in innate immune memory, the involvement of post-translational regulation remains unclear. Here, we report that ubiquitin-specific protease 3 (USP3) participates in establishing "tolerance" innate immune memory through non-transcriptional feedback. Upon NF-κB signaling activation, USP3 is stabilized and exits the nucleus. The cytoplasmic USP3 specifically removes the K63-linked polyubiquitin chains on MyD88, thus negatively regulating TLR/IL1ß-induced inflammatory signaling activation. Importantly, cytoplasmic translocation is a prerequisite step for USP3 to deubiquitinate MyD88. Additionally, LPS priming could induce cytoplasmic retention and faster and stronger cytoplasmic translocation of USP3, enabling it to quickly shut down NF-κB signaling upon the second LPS challenge. This work identifies a previously unrecognized post-translational feedback loop in the MyD88-USP3 axis, which is critical for inducing normal "tolerance" innate immune memory.


Assuntos
Fator 88 de Diferenciação Mieloide , NF-kappa B , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Imunidade Inata , Tolerância Imunológica
11.
Proc Natl Acad Sci U S A ; 119(40): e2123231119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161910

RESUMO

ß-Arrestin 1 (ARRB1) has been recognized as a multifunctional adaptor protein in the last decade, beyond its original role in desensitizing G protein-coupled receptor signaling. Here, we identify that ARRB1 plays essential roles in mediating gastric cancer (GC) cell metabolism and proliferation, by combining cohort analysis and functional investigation using patient-derived preclinical models. Overexpression of ARRB1 was associated with poor outcome of GC patients and knockdown of ARRB1 impaired cell proliferation both ex vivo and in vivo. Intriguingly, ARRB1 depicted diverse subcellular localizations during a passage of organoid cultures (7 d) to exert dual functions. Further analysis revealed that nuclear ARRB1 binds with transcription factor E2F1 triggering up-regulation of proliferative genes, while cytoplasmic ARRB1 modulates metabolic flux by binding with the pyruvate kinase M2 isoform (PKM2) and hindering PKM2 tetramerization, which reduces pyruvate kinase activity and leads to cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis. As ARRB1 localization was shown mostly in the cytoplasm in human GC samples, therapeutic potential of the ARRB1-PKM2 axis was tested, and we found tumor proliferation could be attenuated by the PKM2 activator DASA-58, especially in ARRB1high organoids. Together, the data in our study highlight a spatiotemporally dependent role of ARRB1 in mediating GC cell metabolism and proliferation and implies reactivating PKM2 may be a promising therapeutic strategy in a subset of GC patients.


Assuntos
Piruvato Quinase , Neoplasias Gástricas , beta-Arrestina 1 , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Fator de Transcrição E2F1/metabolismo , Glicólise/fisiologia , Humanos , Isoformas de Proteínas/genética , Piruvato Quinase/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
12.
Stroke ; 55(5): 1359-1369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38545773

RESUMO

BACKGROUND: The structure and staffing of hospitals greatly impact patient outcomes, with frequent changes occurring during nights and weekends. This retrospective cohort study assessed the impact of admission timing on in-hospital management and outcomes for patients with stroke receiving reperfusion therapy in China using data from a nationwide registry. METHODS: Data from patients receiving reperfusion therapy were extracted from the Chinese Stroke Center Alliance. Hospital admission time was categorized according to day/evening versus night and weekday versus weekend. Primary outcomes were in-hospital death or discharge against medical advice, hemorrhage transformation, early neurological deterioration, and major adverse cardiovascular events. Logistic regression was performed to compare in-hospital management performance and outcomes based on admission time categories. RESULTS: Overall, 42 381 patients received recombinant tissue-type plasminogen activator (r-tPA) therapy, and 5224 underwent endovascular treatment (EVT). Patients admitted during nighttime had a higher probability of receiving r-tPA therapy within 4.5 hours from onset or undergoing EVT within 6 hours from onset compared with those admitted during day/evening hours (adjusted odds ratio, 1.04 [95% CI, 1.01-1.08]; P=0.021; adjusted odds ratio, 1.72 [95% CI, 1.59-1.86]; P<0.001, respectively). However, no significant difference was observed between weekend and weekday admissions for either treatment. No notable differences were noted between weekends and weekdays or nighttime and daytime periods in door-to-needle time for r-tPA or door-to-puncture time for EVT initiation. Furthermore, weekend or nighttime admission did not have a significant effect on the primary outcomes of r-tPA therapy or EVT. Nevertheless, in patients undergoing EVT, a higher incidence of pneumonia was observed among those admitted at night compared with those admitted during day/evening hours (adjusted odds ratio, 1.22 [95% CI, 1.05-1.42]; P=0.011). CONCLUSIONS: Patients admitted at nighttime were more likely to receive r-tPA therapy or EVT within the time window recommended in the guidelines. However, patients receiving EVT admitted at night had an increased risk of pneumonia.

13.
BMC Med ; 22(1): 342, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183296

RESUMO

BACKGROUND: Early detection and treatment are effective methods for the management of oral squamous cell carcinoma (OSCC), which can be facilitated by the detection of tumor-specific OSCC biomarkers. The epidermal growth factor receptor (EGFR) and programmed death-ligand 1 (PD-L1) are important therapeutic targets for OSCC. Multispectral fluorescence molecular imaging (FMI) can facilitate the detection of tumor multitarget expression with high sensitivity and safety. Hence, we developed Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes, in combination with multispectral FMI, to sensitively and noninvasively identify EGFR and PD-L1 expression for the detection and comprehensive treatment of OSCC. METHODS: The expression of EGFR and PD-L1 was analyzed using bioinformatics data sources and specimens. Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes were developed and tested on preclinical OSCC cell line and orthotopic OSCC mouse model, fresh OSCC patients' biopsied samples, and further clinical mouthwash trials were conducted in OSCC patients. RESULTS: EGFR and PD-L1 were specifically expressed in human OSCC cell lines and tumor xenografts. Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes can specifically target to the tumor sites in an in situ human OSCC mouse model with good safety. The detection sensitivity and specificity of Nimotuzumab-ICG in patients were 96.4% and 100%, and 95.2% and 88.9% for Atezolizumab-Cy5.5. CONCLUSIONS: EGFR and PD-L1 are highly expressed in OSCC, the combination of which is important for a precise prognosis of OSCC. EGFR and PD-L1 expression can be sensitively detected using the newly synthesized multispectral fluorescence imaging probes Nimotuzumab-ICG and Atezolizumab-Cy5.5, which can facilitate the sensitive and specific detection of OSCC and improve treatment outcomes. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2100045738. Registered 23 April 2021, https://www.chictr.org.cn/bin/project/edit?pid=125220.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno B7-H1 , Carcinoma de Células Escamosas , Receptores ErbB , Neoplasias Bucais , Imagem Óptica , Humanos , Antígeno B7-H1/metabolismo , Animais , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/diagnóstico , Imagem Óptica/métodos , Anticorpos Monoclonais Humanizados/uso terapêutico , Camundongos , Feminino , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/diagnóstico , Masculino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Imagem Molecular/métodos , Biomarcadores Tumorais/metabolismo
14.
Small ; : e2401499, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082407

RESUMO

Hepatocellular injury, a pivotal contributor to liver diseases, particularly hepatitis, lacks effective pharmacological treatments. Interleukin-22 (IL-22), crucial for liver cell survival, shows potential in treating liver diseases by regulating repair and regeneration through signal transducer and activator of transcription 3 (STAT3) activation. However, the short half-life and off-target effects limit its clinical applications. To address these issues, lipid nanoparticles are employed to deliver synthetic IL-22 mRNA (IL-22/NP) for in situ IL-22 expression in hepatocytes. The study reveals that IL-22/NP exhibits liver-targeted IL-22 expression, with increased IL-22 levels detected in the liver as early as 3 h postintravenous injection, lasting up to 96 h. Furthermore, IL-22/NP activates STAT3 signaling in an autocrine or paracrine manner to upregulate downstream factors Bcl-xL and CyclinD1, inhibiting hepatocyte apoptosis and promoting cell proliferation. The therapeutic efficacy of IL-22/NP is demonstrated in both chronic and acute liver injury models, suggesting IL-22 mRNA delivery as a promising treatment strategy for hepatitis and liver diseases involving hepatocellular injury.

15.
Int J Med Microbiol ; 314: 151596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128407

RESUMO

The opportunistic fungal pathogen Candida albicans could cause severe clinical outcomes which could be exacerbated by the scarcity of antifungals. The capacity of C. albicans to form biofilms on medical devices that are hard to eradicate, further deepen the need to develop antifungal agents. In this study, we, for the first time, showed that patchouli alcohol (PA) can inhibit the growth of multiple C. albicans strains, as well as four other Candida species, with MICs of 64 µg/mL and MFCs from 64 to 128 µg/mL. The biofilm formation and development, adhesion, yeast-to-hyphal transition and extracellular polysaccharide of C. albicans can be inhibited by PA in a concentration-dependent manner. Confocal microscopy analyses of cells treated with PA showed that PA can increase the membrane permeability and intracellular reactive oxygen species (ROS) production. In C. elegans, PA did not influence the survival below 64 µg/mL. In this study PA demonstrated antifungal and antibiofilm activity against C. albicans and our results showed the potential of developing PA to fight Candida infections.


Assuntos
Antifúngicos , Candida albicans , Sesquiterpenos , Animais , Antifúngicos/farmacologia , Caenorhabditis elegans/microbiologia , Virulência , Biofilmes , Testes de Sensibilidade Microbiana
16.
Eur J Nucl Med Mol Imaging ; 51(2): 369-379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37759096

RESUMO

PURPOSE: PD-L1 PET imaging, as a non-invasive procedure, can perform a real-time, dynamic and quantitative analysis of PD-L1 expression at tumor sites. In this study, we developed a novel peptide-based PET tracer, [68 Ga]Ga-AUNP-12, for preclinical and first-of-its-kind imaging of PD-L1 expression in patients. METHODS: Radiosynthesis of [68 Ga]Ga-AUNP-12 was conducted. Assays for cellular uptake and binding were conducted on the PANC02, CT26, and B16F10 cell lines. Preclinical models were used to investigate its biodistribution, imaging capacity, and pharmacokinetics. Furthermore, interferon-γ (IFN-γ) was used for development of an animal model with high PD-L1 expression for targeted PET imaging and efficacy evaluation of PD-L1 blocking therapy. In healthy volunteers and cancer patients, the PD-L1 imaging, radiation dosimetry, safety, and biodistribution were further evaluated. RESULTS: In vitro and in vivo animal studies showed that [68 Ga]Ga-AUNP-12 PET imaging displayed a high specificity in evaluating PD-L1 expression. The radiochemical yield of [68 Ga]Ga-AUNP-12 was 71.7 ± 8.2%. Additionally, its molar activity and radiochemical purity were satisfactory. The B16F10 tumor was visualized with the tumor uptake of 6.86 ± 0.71% ID/g and tumor-to-muscle ratio of 6.83 ± 0.36 at 60 min after [68 Ga]Ga-AUNP-12 injection. Furthermore, [68 Ga]Ga-AUNP-12 PET imaging could sensitively detect the PD-L1 dynamic changes in CT26 tumor xenograft models regulated by IFN-γ treatment, and correspondingly can effectively guide immunotherapy. Regarding radiation dosimetry, [68 Ga]Ga-AUNP-12 is safe for human use. The first human study found that [68 Ga]Ga-AUNP-12 can be rapidly cleared from blood and other nonspecific organs through the kidney excretion, leading to form a clear imaging contrast in the clinical framework. The specificity of [68 Ga]Ga-AUNP-12 was validated and tumor uptake strongly correlated with the high PD-L1 expression in patients with lung adenocarcinoma and oesophageal squamous cell carcinoma (OSCC). CONCLUSION: [68 Ga]Ga-AUNP-12 was successfully developed as a PD-L1-specific PET imaging tracer in preclinical and first-in-human studies.


Assuntos
Radioisótopos de Gálio , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
17.
Eur J Nucl Med Mol Imaging ; 51(7): 1841-1855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38372766

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a lethal hypovascular tumor surrounded by dense fibrosis. Albumin-bound paclitaxel and gemcitabine (AG) chemotherapy is the mainstay of PDAC treatment through depleting peritumoral fibrosis and killing tumor cells; however, it remains challenging due to the lack of a noninvasive imaging method evaluating fibrotic changes during AG chemotherapy. In this study, we developed a dual-modality imaging platform that enables noninvasive, dynamic, and quantitative assessment of chemotherapy-induced fibrotic changes through near-infrared fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI) using an extradomain B fibronectin (EDB-FN)-targeted imaging probe (ZD2-Gd-DOTA-Cy7). METHODS: The ZD2-Gd-DOTA-Cy7 probe was constructed by conjugating a peptide (Cys-TVRTSAD) to Gd-DOTA and the near-infrared dye Cy7. PDAC murine xenograft models were intravenously injected with ZD2-Gd-DOTA-Cy7 at a Gd concentration of 0.05 mmol/kg or free Cy7 and Gd-DOTA as control. The normalized tumor background ratio (TBR) on FMI and the T1 reduction ratio on MRI were quantitatively analyzed. For models receiving AG chemotherapy or saline, MRI/FMI was performed before and after treatment. Histological analyses were performed for validation. RESULTS: The ZD2-Gd-DOTA-Cy7 concentration showed a linear correlation with the fluorescence intensity and T1 relaxation time in vitro. The optimal imaging time was 30 min after injection of the ZD2-Gd-DOTA-Cy7 (0.05 mmol/kg), only half of the clinic dosage of gadolinium. Additionally, ZD2-Gd-DOTA-Cy7 generated a 1.44-fold and 1.90-fold robust contrast enhancement compared with Cy7 (P < 0.05) and Gd-DOTA (P < 0.05), respectively. For AG chemotherapy monitoring, the T1 reduction ratio and normalized TBR in the fibrotic tumor areas were significantly increased by 1.99-fold (P < 0.05) and 1.78-fold (P < 0.05), respectively, in the control group compared with those in the AG group. CONCLUSION: MRI/FMI with a low dose of ZD2-Gd-DOTA-Cy7 enables sensitive imaging of PDAC and the quantitative assessment of fibrotic changes during AG chemotherapy, which shows potential clinical applications for precise diagnosis, post-treatment monitoring, and disease management.


Assuntos
Carcinoma Ductal Pancreático , Meios de Contraste , Fibronectinas , Imageamento por Ressonância Magnética , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Camundongos , Meios de Contraste/química , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Humanos , Linhagem Celular Tumoral , Imagem Multimodal , Imagem Óptica , Compostos Organometálicos , Resultado do Tratamento , Gencitabina , Gadolínio/química , Feminino , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Desoxicitidina/farmacologia , Compostos Heterocíclicos
18.
Artigo em Inglês | MEDLINE | ID: mdl-39060372

RESUMO

PURPOSE: The incomplete resection of non-muscle invasive bladder cancer (NMIBC) augments the risk of disease recurrence. Imaging-guided surgery by molecular probes represents a pivotal strategy for mitigating postoperative recurrence. Traditional optical molecular probes, primarily composed of antibodies/peptides targeting tumour cells and fluorescent groups, are challenged by the high heterogeneity of NMIBC cells, leading to inadequate probe sensitivity. We have developed a collagen-adhesive probe (CA-P) to target the collagen within the tumour microenvironment, aiming to address the issue of insufficient imaging sensitivity. METHODS: The distribution characteristics of collagen in animal bladder cancer models and human bladder cancer tissues were explored. The synthesis and properties of CA-P were validated. In animal models, the imaging performance of CA-P was tested and compared with our previously reported near-infrared probe PLSWT7-DMI. The clinical translational potential of CA-P was assessed using human ex vivo bladder tissues. RESULTS: The distribution of collagen on the surface of tumour cells is distinct from its expression in normal urothelium. In vitro studies have demonstrated the ability of the CA-P to undergo a "sol-gel" transition upon interaction with collagen. In animal models and human ex vivo bladder specimens, CA-P exhibits superior imaging performance compared to PLSWT7-DMI. The sensitivity of this probe is 94.1%, with a specificity of 81%. CONCLUSION: CA-P demonstrates the capability to overcome tumour cell heterogeneity and enhance imaging sensitivity, exhibiting favorable imaging outcomes in preclinical models. These findings provide a theoretical basis for the application of CA-P in intraoperative navigation for NMIBC.

19.
Chemistry ; : e202402575, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39450572

RESUMO

The selective cleavage of C-N bonds in N-containing compounds holds significant research value in organic synthesis, particularly for the synthesis of promising polynitrogen species. For instance, the discovery of the cyclo-pentazolate (cyclo-N5-) anion in 2017 as a result of cleavage of the C-N bond has sparked interest within the field of high energy density materials. However, previous methods using ferrous glycinate and m-chloroperoxybenzoic acid generated the cyclo-N5- anion in a low yield of 19.5% after 24 hours, and the mechanism remained unclear. In this study, we developed an efficient catalytic system comprising Mn (II) tetraphenylporphyrin and cumyl hydroperoxide. This system enables the cyclo-N5- anion to be produced from 3,5-dimethyl-4-hydroxyphenylpentazole in 35.4% yield in 4 hours. Characterization of Mn(IV)-oxo porphyrins, •CH3, and •C8H8ON5 radicals provides evidence for the mechanism whereby the cyclo-N5- anion forms. Our study underscores the competitive potential of radical-initiated selective C-N bonds cleavage in N-arylazoles and opens avenues for further exploration in this field.

20.
Mol Psychiatry ; 28(7): 3092-3103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37117459

RESUMO

Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs). We performed a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies to examine the neurometabolite levels in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound) Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is a confounding factor for certain neurometabolite levels in patients with ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Ácido Glutâmico , Ácido Aspártico , Colina , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA