Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Am Chem Soc ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968087

RESUMO

Molecule-inclusive closed cage compounds present a unique platform for molecular motion in an isolated environment. This study showcases the incorporation of a tadpole-like polar molecule (1-propyl-1H-imidazole, PIm) into a supramolecular cage formed by duad semicage p-tert-butylcalix[4]arene. The ferroelectric phase transition as well as the cage-confined motion of encapsulated PIm was studied in detail. The unusual quadrastable state of the PIm in the paraelectric phase allows for the modulation of dipolar polarization over a broad temperature/frequency range. This compound represents the first example of a clathrate molecular ferroelectric featuring a molecule-inclusive supramolecular cage, and it also contributes to the understanding of cage-confined molecular dynamics.

2.
Inorg Chem ; 63(12): 5761-5768, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38485515

RESUMO

The reasonably constructed high-performance electrocatalyst is crucial to achieve sustainable electrocatalytic water splitting. Alloying is a prospective approach to effectively boost the activity of metal electrocatalysts. However, it is a difficult subject for the controllable synthesis of small alloying nanostructures with high dispersion and robustness, preventing further application of alloy catalysts. Herein, we propose a well-defined molecular template to fabricate a highly dispersed NiRu alloy with ultrasmall size. The catalyst presents superior alkaline hydrogen evolution reaction (HER) performance featuring an overpotential as low as 20.6 ± 0.9 mV at 10 mA·cm-2. Particularly, it can work steadily for long periods of time at industrial-grade current densities of 0.5 and 1.0 A·cm-2 merely demanding low overpotentials of 65.7 ± 2.1 and 127.3 ± 4.3 mV, respectively. Spectral experiments and theoretical calculations revealed that alloying can change the d-band center of both Ni and Ru by remodeling the electron distribution and then optimizing the adsorption of intermediates to decrease the water dissociation energy barrier. Our research not only demonstrates the tremendous potential of molecular templates in architecting highly active ultrafine nanoalloy but also deepens the understanding of water electrolysis mechanism on alloy catalysts.

3.
Phys Chem Chem Phys ; 26(9): 7269-7275, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38193864

RESUMO

On the basis of variable-temperature single-crystal X-ray diffraction, rotational energy barrier analysis, variable-temperature/frequency dielectric response, and molecular dynamics simulations, here we report a new crystalline supramolecular rotor (CH3NH3)(18-crown-6)[CuCl3], in which the (H3C-NH3)+ ion functions as a smallest dual-wheel rotator showing bisected rotation dynamics, while the host 18-crown-6 macrocycle behaves as a stator that is not strictly stationary. This study also provides a helpful insight into the dynamics of ubiquitous -CH3/-NH3 groups confined in organic or organic-inorganic hybrid solids.

4.
Phys Chem Chem Phys ; 26(5): 3974-3980, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38221866

RESUMO

On the basis of variable-temperature single-crystal X-ray diffraction, variable-temperature/frequency dielectric analysis, variable-temperature solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, here we present a new model of crystalline supramolecular rotor (i-PrNHMe2)[CdBr3], where a conformationally flexible near-spherical (i-PrNHMe2)+ cation functions as a rotator and a rod-like anionic coordination polymer {[CdBr3]-}∞ acts as the stator, and the adhesion of them is realized by charge-assisted hydrogen bonds.

5.
J Am Chem Soc ; 145(36): 20000-20008, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610355

RESUMO

Advances in single-atom (-site) catalysts (SACs) provide a new solution of atomic economy and accuracy for designing efficient electrocatalysts. In addition to a precise local coordination environment, controllable spatial active structure and tolerance under harsh operating conditions remain great challenges in the development of SACs. Here, we show a series of molecule-spaced SACs (msSACs) using different acid anhydrides to regulate the spatial density of discrete metal phthalocyanines with single Co sites, which significantly improve the effective active-site numbers and mass transfer, enabling one of the msSACs connected by pyromellitic dianhydride to exhibit an outstanding mass activity of (1.63 ± 0.01) × 105 A·g-1 and TOFbulk of 27.66 ± 1.59 s-1 at 1.58 V (vs RHE) and long-term durability at an ultrahigh current density of 2.0 A·cm-2 under industrial conditions for oxygen evolution reaction. This study demonstrates that the accessible spatial density of single atom sites can be another important parameter to enhance the overall performance of catalysts.

6.
J Am Chem Soc ; 145(2): 1144-1154, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36538569

RESUMO

Remolding the reactivity of metal active sites is critical to facilitate renewable electricity-powered water electrolysis. Doping heteroatoms, such as Se, into a metal crystal lattice has been considered an effective approach, yet usually suffers from loss of functional heteroatoms during harsh electrocatalytic conditions, thus leading to the gradual inactivation of the catalysts. Here, we report a new heteroatom-containing molecule-enhanced strategy toward sustainable oxygen evolution improvement. An organoselenium ligand, bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide containing robust C-Se-C covalent bonds equipped in the precatalyst of ultrathin metal-organic nanosheets Co-SeMON, is revealed to significantly enhance the catalytic mass activity of the cobalt site by 25 times, as well as extend the catalyst operation time in alkaline conditions by 1 or 2 orders of magnitude compared with these reported metal selenides. A combination of various in situ/ex situ spectroscopic techniques, ab initio molecular dynamics, and density functional theory calculations unveiled the organoselenium intensified mechanism, in which the nonclassical bonding of Se to O-containing intermediates endows adsorption-energy regulation beyond the conventional scaling relationship. Our results showcase the great potential of molecule-enhanced catalysts for highly efficient and economical water oxidation.


Assuntos
Cobalto , Metais , Adsorção , Oxigênio , Água
7.
Inorg Chem ; 61(18): 7201-7206, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35476414

RESUMO

Here, we report a weakly bound ionic cocrystal, (Et3NCH2Cl)2[ZnCl4], which undergoes a reversible structural phase transition owing to the switched molecular dynamics of the quasi-spherical (Et3NCH2Cl)+ cation from static to dynamic. Interestingly, a unique rolling and moving mechanism is uncovered for such a cation in the high-temperature phase, where its two methylene groups exhibit different kinetic energy barriers. This study provides a meaningful insight into the solid-state molecular dynamics of large-size quasi-spherical molecules that contain both a rigid core and flexible shell.

8.
Inorg Chem ; 60(5): 3365-3374, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570389

RESUMO

The development of oxygen evolution reaction (OER) catalysts with high activity and high stability through convenient and economical methods is greatly important for the promotion of hydrogen energy based on electrolysis technology. Herein, by using an unconventional high electrodeposition potential, novel petal-like clusters constructed by cross-linking ultrathin nickel hydroxide nanosheets were controllably synthesized on nickel foam (or copper foam or carbon cloth) and the effect of electrodeposition conditions on their OER performance was carefully explored. Due to the abundant catalytically active sites, promoting electron conduction/mass transmission from the specific micro-nano structure, as well as the ultrasmall thickness of ∼3.0 nm, the optimized α-Ni(OH)2/NF self-supporting electrode exhibits excellent electrocatalytic performance for OER, merely requiring low overpotentials of 192 and 240 mV to yield current densities of 10 and 100 mA cm-2 in 1.0 M KOH, respectively, which surpassed those of all of the reported nickel hydroxide/oxides and the benchmark RuO2. Moreover, α-Ni(OH)2/NF can drive the high-current density (500-1000 mA cm-2) OER at low overpotentials, meeting the requirements of potential industrial applications.

9.
Angew Chem Int Ed Engl ; 57(27): 8032-8036, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29722925

RESUMO

Dielectric switches that can be converted between high and low dielectric states by thermal stimuli have attracted much interest owing to their many potential applications. Currently one main drawback for practical application lies in the non-tunability of their switch temperatures (TS ). We report here an ionic co-crystal (Me3 NH)4 [Ni(NCS)6 ] that contains a multiply rotatable Me3 NH+ ion and a solely rotatable one due to a more spacious supramolecular cage for the former one. This compound undergoes an isostructural order-disorder phase transition and it can function as a frequency-tuned dielectric switch with highly adjustable TS , which is further revealed by the variable-temperature structure analyses and molecular dynamics simulations. In addition, the distinct arrangements and molecular dynamics of two coexisting Me3 NH+ ions confined in different lattice spaces as well as the notable offset effect on the promoting/hindering of dipolar reorientation after dielectric transition provide a rarely observed but fairly good model for understanding and modulating the dipole motion in crystalline environment.

10.
J Am Chem Soc ; 139(24): 8086-8089, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28582975

RESUMO

A new strategy for the construction of crystalline molecular rotors is presented. The combination of a conformation-modifiable macrocyclic host and two cooperative guests affords one supramolecular gyroscope-like compound, (t-BuNH3)(18-crown-6)[ZnCl3(H2O)], in which the coordinated water molecule functions as an ultrasmall polar rotator, revealed by its significant dielectric relaxation and the molecular dynamics simulations. In addition, such a compound can reversibly undergo a polar-to-polar phase transition triggered by the changed conformation of the 18-crown-6 host, leading to a switchable on/off rotation of water molecule, well controlled by strength and direction of charge-assisted hydrogen bonds.

11.
Inorg Chem ; 56(16): 9946-9953, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28782950

RESUMO

Two new double perovskite-like azido coordination polymers with trimethylammonium as the guest cation, namely, (Me3NH)2[CrNa(N3)6] and (Me3NH)2[CrK(N3)6], have been prepared. The molecular dynamics for both compounds are investigated and are clearly uncovered by the first-principles molecular dynamics simulation and the significant dielectric relaxation. Structural analyses of these compounds in combination with their analogue (Me3NH)[Mn(N3)3] reveal that the guest trimethylammonium has flexible structural adaptability, especially with a variety of disordered distributions, to match the different symmetries of varied metal-azido frameworks. Interestingly, the replacement of the divalent metal ion by mixed monovalent/trivalent metal ions can change the symmetry, shape, and charge distribution of the host cage unit; thus it may influence and regulate the arrangement of the guest inclusion and its molecular dynamics as well as the structural phase transition.

12.
Inorg Chem ; 55(8): 3738-49, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27023680

RESUMO

Three types of lanthanide complexes based on the tetrazole-1-acetic acid ligand and the 2,2'-bipyridine coligand were prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analyses; the formulas of these complexes are [Ln2(1-tza)4(NO3)2(2,2'-bipy)2] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5)), [Dy2(1-tza)4Cl2(2,2'-bipy)2] (6), and [Yb2(1-tza)4(NO3)2(2,2'-bipy)2] (7) (1-tza = tetrazole-1-acetate and 2,2'-bipy = 2,2'-bipyridine). They are dinuclear complexes possessing similar structures but different lanthanide(III) ion coordination geometries because of the distinction of peripheral anions (such as NO3(-) and Cl(-)) and the effect of lanthanide contraction. The variable-temperature magnetic susceptibilities of 1-6 were measured. Both Dy(III) complexes (5 and 6) display field-induced single-molecule magnet behaviors. Ab initio calculations revealed that the Dy(III) complex 6 possesses a more anisotropic Dy(III) ion in comparison to that in 5. The room-temperature photoluminescence spectra of Sm(III) (1), Eu(III) (2), Tb(III) (4), and Dy(III) (5 and 6) complexes exhibit strong characteristic emissions in the visible region, whereas the Yb(III) (7) complex shows near-infrared (NIR) luminescence.

13.
Inorg Chem ; 55(21): 11418-11425, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27767313

RESUMO

Plastic crystals functioning with rotatable components offer new opportunities in areas such as modern optoelectronic materials. Here, by taking advantage of controllable rotation of the polar component within the ion-pair plastic-crystal system, we present two such crystals, namely, (Et4N)(CrO3X) (X = Cl or Br), which are unusual examples exhibiting two-staged thermosensitive dielectric responses above room temperature. The frequency-dependent response in the first stage is due to the structural phase transitions, whereas that in the second stage is induced by dynamic rotation of the polar halochromate anions in their NaCl-type plastic-crystal phases. The intrinsic mechanisms were also explicated by molecular dynamics simulations, providing a direct insight into the dynamic characteristics of these two compounds. These studies show that ionic plastic crystals functioning with polar groups are an attractive candidate as sensitive thermoresponsive dielectric materials.

14.
Angew Chem Int Ed Engl ; 54(3): 914-8, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25430633

RESUMO

A new perovskite-like coordination polymer [(CH3)2NH2][Cd(N3)3] is reported which undergoes a reversible ferroelastic phase transition. This transition is due to varied modes of motion of the [(CH3)2NH2](+) guest accompanied by a synergistic deformation of the [Cd(N3)3](-) framework. The unusual two-staged switchable dielectric relaxation reveals the molecular dynamics of the polar cation guest, which are well controlled by the variable confined space of the host framework. As the material switches from the ferroelastic phase to the paraelastic phase, a remarkable increase of the rotational energy barrier is detected. As a result, upon heating at low temperature, this compound shows a notable change from a low to a high dielectric state in the ferroelastic phase. This thermoresponsive host-guest system may serve as a model compound for the development of sensitive thermoresponsive dielectric materials and may be key to understanding and modulating molecular/ionic dynamics of guest molecules in confined space.

15.
Theor Appl Genet ; 126(11): 2865-78, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23989648

RESUMO

KEY MESSAGE: Seven sharp eyespot resistance QTL were detected consistently across five environments and delimited to seven DNA marker intervals, respectively, six of which were independent of plant height and heading time. Sharp eyespot, caused mainly by the soil-borne fungus Rhizoctonia cerealis, is one of the important diseases of bread wheat (Triticum aestivum L.). This disease has escalated into a major threat to wheat production in some regions of the world. Wheat resistance to sharp eyespot can be a potential means to reduce the needs for application of fungicides and agricultural inputs. In the present study, the winter wheat lines, Luke and AQ24788-83, both of which possess quantitative resistance to sharp eyespot, were crossed and a population consisting 241 recombinant-inbred lines (RILs) was constructed. These RILs were assessed for sharp eyespot resistance by conducting five field and greenhouse trials during the period from 2008 to 2012, and they were genotyped with 549 simple-sequence repeat DNA markers. Seven quantitative trait loci (QTL) were detected consistently across the five trial environments to be associated with the sharp eyespot resistance. They were mapped on chromosomes 1A, 2B, 3B, 4A, 5D, 6B, and 7B. Four of these QTL are unequivocally novel, while it is possible that the other three might also be novel. Plant height and heading date of the 241 RILs were recorded in the four field trials. All of the seven disease resistance QTL were independent of plant height and heading time except one that was significantly associated with plant heading time. This association might be attributed genetically to a single QTL, or to different but closely linked QTL. In the case of single QTL, pleiotropism might be involved or the sharp eyespot resistance might be conferred in a physical instead of physiological nature.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Rhizoctonia/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Análise de Variância , Pão , Cromossomos de Plantas/genética , Ligação Genética , Endogamia , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/imunologia
16.
J Phys Chem Lett ; 14(36): 8009-8015, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37651131

RESUMO

Free accessible confined space and loose interaction are crucial for most solid-state ionic motions. Here, by using a near-spherical anion and a disc-shaped ammonium as two distinct but rigid building blocks, we report a new ionic crystal, (HMIm)3[La(NO3)6] (HMIm = 1-methyl-1H-imidazol-3-ium), in which the different confined spaces of three (HMIm)+ ions are fine-tuned over a broad temperature range. This effect can be utilized to modulate the dipolar polarization across a wide temperature/frequency range. Additionally, small-scale substitution of (HMIm)+ by its isomer of almost identical shape/size affords molecular solid solutions, which can further tune the dipolar polarization by varying the doping ratio. It is revealed that the differences in dipole moment and hydrogen bond rather than that of shape/size lead to a distorted crystalline environment for these solid solutions. Overall, we provide an exceptional model for understanding and regulating the dipole motion of polar aromatic molecules/ions in a crystalline environment.

17.
Acta Crystallogr C ; 68(Pt 9): o355-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22935503

RESUMO

Cocrystallization of melamine (1,3,5-triazine-2,4,6-triamine, ma) with (2-carboxyethyl)(phenyl)phosphinic acid (H(2)L) from water affords the title compound, C(3)H(7)N(6)(+)·C(9)H(10)O(4)P(-)·H(2)O or (maH)(HL)·H(2)O, (I). The phosphinic acid H atom of each H(2)L molecule is transferred to a melamine molecule. Structural analysis reveals that there are two types of secondary building units in the crystal structure, namely cationic [(maH(+))(2)](∞) ribbons and anionic {[(HL)(2)(H(2)O)(2)](2-)}(∞) layers, the combination of which through hydrogen-bond and electrostatic interactions, generates a large-scale two-dimensional layered structure. The thick layer is sandwich-like, with the central [(maH(+))(2)](∞) ribbons being further stabilized by π-π stacking interactions. It is also worthy of note that two conformational isomeric R(6)(5)(24) hydrogen-bond ring motifs can be identified in the {[(HL)(2)(H(2)O)(2)](2-)}(∞) layer.

18.
Acta Crystallogr C ; 67(Pt 6): o195-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21633158

RESUMO

Two polymorphs of (2-carboxyethyl)(phenyl)phosphinic acid, C(9)H(11)O(4)P, crystallize in the chiral P2(1)2(1)2(1) space group with similar unit-cell parameters. They feature an essentially similar hydrogen-bonding motif but differ slightly in their detailed geometric parameters. For both polymorphs, the unequivocal location of the hydroxy H atoms together with the expected differences in the P-O bond lengths establish unequivocally that both forms contain the S isomer; the protonated phosphinic acid and carboxy O atoms serve as hydrogen-bond donors, while the second phosphinic acid O atom acts as a double hydrogen-bond acceptor and the remaining carboxy O atom is not involved in hydrogen bonding. Thus, an undulating two-dimensional supramolecular layer aggregate is formed based on an R(4)(3)(20) ring unit. Such polymorphism derives from the rotation of the C-C single bonds between the two hydrogen-bond-involved carboxy and phosphinic acid moieties.

19.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 3): m362-3, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21522287

RESUMO

The title compound, [Mg(C(3)H(10)NO(6)P(2))(2)](n), synthesized by a hydro-thermal method, adopts a one-dimensional polymeric chain structure and is isotypic with the previously reported Cd complex based on the ligand N,N-dimethyl-amino-methane-1,1-diphospho-nic acid (H(4)L). The asymmetric unit contains one half Mg(2+) ion and one H(3)L(-) anion. The unique Mg(2+) ion lies on an inversion center and is octa-hedrally coordinated by O atoms from six phospho-nate groups of four different H(3)L(-) anions. Each H(3)L(-) anion, with one protonated N atom and two phospho-nate OH groups, serves as a tridentate ligand. Two of its six phospho-nate O atoms chelate to a Mg(2+) cation in a bidentate fashion, while a third O atom bridges to a neighbouring Mg(2+) ion. The inter-connection of Mg(2+) ions by the H(3)L(-)anions leads to the formation of a polymer chain along the a axis in which the adjacent Mg(2+) ions are doubly bridged by two equivalent H(3)L(-) anions. These discrete chains are further assembled into a three-dimensional supra-molecular network via O-H⋯O and N-H⋯O hydrogen bonds involving the non-coordin-ated phospho-nate O atoms and the protonated N atoms.

20.
Chem Commun (Camb) ; 57(59): 7292-7295, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34213519

RESUMO

By utilizing a supramolecular complex rather than an individual molecule as a deformable and elastic substitutional component, we put forward a solid-solution strategy and demonstrate an example of how two related yet non-isostructural crystalline host-guest compounds can form molecular solid solutions. Interestingly, such a strategy can effectively and continuously modulate the molecular motion and phase transition in them, as revealed by the variable-temperature/frequency dielectric responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA