Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 582(7812): 432-437, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499643

RESUMO

Highly structured RNA molecules usually interact with each other, and associate with various RNA-binding proteins, to regulate critical biological processes. However, RNA structures and interactions in intact cells remain largely unknown. Here, by coupling proximity ligation mediated by RNA-binding proteins with deep sequencing, we report an RNA in situ conformation sequencing (RIC-seq) technology for the global profiling of intra- and intermolecular RNA-RNA interactions. This technique not only recapitulates known RNA secondary structures and tertiary interactions, but also facilitates the generation of three-dimensional (3D) interaction maps of RNA in human cells. Using these maps, we identify noncoding RNA targets globally, and discern RNA topological domains and trans-interacting hubs. We reveal that the functional connectivity of enhancers and promoters can be assigned using their pairwise-interacting RNAs. Furthermore, we show that CCAT1-5L-a super-enhancer hub RNA-interacts with the RNA-binding protein hnRNPK, as well as RNA derived from the MYC promoter and enhancer, to boost MYC transcription by modulating chromatin looping. Our study demonstrates the power and applicability of RIC-seq in discovering the 3D structures, interactions and regulatory roles of RNA.


Assuntos
Conformação de Ácido Nucleico , RNA/química , RNA/genética , Análise de Sequência de RNA/métodos , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos/genética , Elementos Facilitadores Genéticos/genética , Genes myc/genética , Genes de RNAr/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Transcrição Gênica
2.
BMC Biol ; 21(1): 231, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867192

RESUMO

BACKGROUND: RNA splicing plays significant roles in fundamental biological activities. However, our knowledge about the roles of alternative splicing and underlying mechanisms during spermatogenesis is limited. RESULTS: Here, we report that Serine/arginine-rich splicing factor 2 (SRSF2), also known as SC35, plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf2 by Stra8-Cre caused complete infertility and defective spermatogenesis. Further analyses revealed that deletion of Srsf2 disrupted differentiation and meiosis initiation of spermatogonia. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF2 regulatory networks play critical roles in several major events including reproductive development, spermatogenesis, meiotic cell cycle, synapse organization, DNA recombination, chromosome segregation, and male sex differentiation. Furthermore, SRSF2 affected expression and alternative splicing of Stra8, Stag3 and Atr encoding critical factors for spermatogenesis in a direct manner. CONCLUSIONS: Taken together, our results demonstrate that SRSF2 has important functions in spermatogenesis and male fertility by regulating alternative splicing.


Assuntos
Splicing de RNA , Espermatogênese , Masculino , Humanos , Espermatogênese/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo , Meiose/genética , RNA Mensageiro
3.
Sci Bull (Beijing) ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580551

RESUMO

The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.

4.
Int J Biol Sci ; 19(15): 4883-4897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781512

RESUMO

Alternative splicing (AS) plays significant roles in a multitude of fundamental biological activities. AS is prevalent in the testis, but the regulations of AS in spermatogenesis is only little explored. Here, we report that Serine/arginine-rich splicing factor 1 (SRSF1) plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf1 led to complete infertility by affecting spermatogenesis. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF1 affected the AS of Stra8 in a direct manner and Dazl, Dmc1, Mre11a, Syce2 and Rif1 in an indirect manner. Our findings demonstrate that SRSF1 has crucial functions in spermatogenesis and male fertility by regulating alternative splicing.


Assuntos
Processamento Alternativo , Espermatogênese , Masculino , Processamento Alternativo/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Animais
5.
Nat Cell Biol ; 23(6): 664-675, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108658

RESUMO

RNA-binding proteins (RBPs) have essential functions during germline and early embryo development. However, current methods are unable to identify the in vivo targets of a RBP in these low-abundance cells. Here, by coupling RBP-mediated reverse transcription termination with linear amplification of complementary DNA ends and sequencing, we present the LACE-seq method for identifying RBP-regulated RNA networks at or near the single-oocyte level. We determined the binding sites and regulatory mechanisms for several RBPs, including Argonaute 2 (Ago2), Mili, Ddx4 and Ptbp1, in mature mouse oocytes. Unexpectedly, transcriptomics and proteomics analysis of Ago2-/- oocytes revealed that Ago2 interacts with endogenous small interfering RNAs (endo-siRNAs) to repress mRNA translation globally. Furthermore, the Ago2 and endo-siRNA complexes fine-tune the transcriptome by slicing long terminal repeat retrotransposon-derived chimeric transcripts. The precise mapping of RBP-binding sites in low-input cells opens the door to studying the roles of RBPs in embryonic development and reproductive diseases.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Oócitos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA