Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
MedComm (2020) ; 3(3): e167, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36033422

RESUMO

Messenger ribonucleic acid (mRNA) vaccines made their successful public debut in the effort against the COVID-19 outbreak starting in late 2019, although the history of mRNA vaccines can be traced back decades. This review provides an overview to discuss the historical course and present situation of mRNA vaccine development in addition to some basic concepts that underly mRNA vaccines. We discuss the general preparation and manufacturing of mRNA vaccines and also discuss the scientific advances in the in vivo delivery system and evaluate popular approaches (i.e., lipid nanoparticle and protamine) in detail. Next, we highlight the clinical value of mRNA vaccines as potent candidates for therapeutic treatment and discuss clinical progress in the treatment of cancer and coronavirus disease 2019. Data suggest that mRNA vaccines, with several prominent advantages, have achieved encouraging results and increasing attention due to tremendous potential in disease management. Finally, we suggest some potential directions worthy of further investigation and optimization. In addition to basic research, studies that help to facilitate storage and transportation will be indispensable for practical applications.

2.
Front Immunol ; 13: 1087689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741396

RESUMO

Exosomes are membranous vesicles actively secreted by almost all cells and they deliver certain intracellular molecules, including nucleic acids, proteins, and lipids, to target cells. They are also considered to be good carriers for drug delivery due to their biocompatibility, high permeability, low immunogenicity, and low toxicity. Exosomes from immune cells were also reported to have immunomodulatory activities. Herein we evaluated the application of exosomes derived from expanded natural killer cells (eNK-EXO) for the treatment of ovarian cancer (OC). We demonstrate that eNK-EXO express typical protein markers of natural killer (NK) cells, can be preferentially uptaken by SKOV3 cells, and display cytotoxicity against OC cells. Furthermore, eNK-EXO loaded with cisplatin could sensitize drug-resistant OC cells to the anti-proliferation effect of cisplatin. In addition, we show that eNK-EXO could activate NK cells from immunosuppressive tumor microenvironment, the mechanism of which is explored by transcriptional analysis. In summary, eNK-EXO exhibit anti-tumor activity against OC on its own, could be used to deliver cisplatin and enhance its cytotoxic effect against drug-resistant OC cells and also reverse the immunosuppression of NK cells, which may lead to great prospect of using eNK-EXO in the treatment of OC in the clinic. Our work also builds a strong foundation for further evaluation of eNK-EXO in other solid tumor therapies.


Assuntos
Antineoplásicos , Exossomos , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Exossomos/metabolismo , Células Matadoras Naturais , Neoplasias Ovarianas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral
3.
Virus Res ; 301: 198440, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940002

RESUMO

Globally, ovarian cancer is the seventh most common cancer and the eighth-most common cause of cancer death among women with a five-year survival rate of less than 45%. Although reovirus is known to be effective for treating ovarian cancer, some types of tumor cells still exhibit resistance to reovirus. In order to solve this resistance problem in the treatment of ovarian cancer, we selected the reovirus-resistant OV-90 ovarian cancer cells to study reovirus oncolytic effects. We found that the viability of OV-90 cells decreased after reovirus double-stranded RNA (dsRNA) genome transfection. Interestingly, we observed that chemical blockage of the Toll-like receptor 3 (TLR3)-dsRNA binding complex in OV-90 cells and the inhibition of downstream TLR3 signaling disrupted OV-90 apoptosis triggered by reovirus dsRNA. Together, these results demonstrate that reovirus dsRNA induces reovirus-resistant tumor cell apoptosis through the TLR3 signaling pathway.


Assuntos
Terapia Viral Oncolítica , Neoplasias Ovarianas , Reoviridae , Receptor 3 Toll-Like , Apoptose/genética , Feminino , Humanos , Neoplasias Ovarianas/terapia , RNA de Cadeia Dupla/genética , Reoviridae/genética , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA