Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2403107, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030942

RESUMO

Designing robust catalysts for increasing the sluggish kinetics of the urea oxidation reaction (UOR) is challenging. Herein, the regulation of spin states for metal active sites by photoexcitation to facilitate the adsorption of urea and intermediates is demonstrated. Mo-doped nickel sulfide nanoribbon arrays (Mo-Ni3S2@NMF) with excellent light-trapping capacity are successfully prepared. Under AM 1.5G illumination, the activity of the Mo-Ni3S2@NMF exhibits a 50% improvement in the UOR current. Compared with those under dark conditions, Mo-Ni3S2@NMF achieve 10 mA cm-2 at 1.315 VRHE for UOR and 1.32 Vcell for urea electrolysis, which are decreases of 15 and 80 mV, respectively. The electron spin resonance, in situ Fourier transform infrared spectroscopy analysis and density functional theory calculations reveal that illumination led to the formation of Ni3+ active sites in a high-spin state, which strengthens the d-p orbital hybridization of Ni-N, hence facilitating the adsorption of urea. C─N cleavage of the *CONN intermediate is further inhibited, which promotes the oxidation of urea molecules via the active N2 pathway, thereby accelerating the UOR rate.

2.
Inorg Chem ; 63(31): 14602-14608, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39037614

RESUMO

The electrocatalytic urea oxidation reaction (UOR) provides a promising alternative to the oxygen evolution reaction (OER) for various renewable energy-related systems owing to its lower thermodynamic barriers. However, its optimization and commercial utilization were hampered due to a lack of mechanistic understanding. Here, we demonstrate a Ce-doped Ni3S2 catalyst supported on Ni foam (Ce-Ni3S2/NF) with superior activity toward UOR. The resultant Ce-Ni3S2/NF catalyst exhibits a lower Tafel slope of 20.3 mV dec-1, a higher current density of 100 mA cm-2 at 1.39 V versus RHE, and better durability than those for Ni3S2/NF. Based on in situ synchrotron radiation X-ray absorption spectroscopy, in situ Fourier transform infrared (FTIR), and in situ Raman spectroscopy, we observe the structural reconstruction of sulfide and identify the adsorbed intermediates during UOR. Density functional theory (DFT) calculations reveal that Ce can regulate the electronic structure of Ni through Ce(4f)-O(2p)-Ni(3d) orbital electronic coupling. The modulated Ni sites have weaker adsorption of carbonaceous intermediates, thus accelerating the UOR. This work provides a promising route for the design of high-activity UOR catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA