RESUMO
Emerging evidence suggests that long noncoding RNAs (lncRNAs) play important roles in disease development. However, the roles of lncRNAs in the pathogenesis of Candida albicans (C. albicans) remain unclear. Our study aimed to investigate and characterize the mRNA and lncRNA transcriptomes of CD14+ monocytes and THP-1 cells stimulated with insoluble ß-glucan by RNA-seq. We identified a total of 10788 differentially expressed (DE) mRNAs and 2021 DE lncRNAs in CD14+ monocytes, while 3349 DE mRNAs and 291 DE lncRNAs were observed in THP-1 cells. A total of 808 DE mRNAs and 51 DE lncRNAs overlapped between the two groups. We examined five collectively DE mRNAs and lncRNAs in both cells using quantitative real-time PCR, validating the reliability of the RNA-seq results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the 808 DE mRNAs were mostly enriched in the inflammatory response and NF-kappa B signaling pathway, respectively. Next, lncRNA-mRNA coexpression analysis was performed for the 51 DE lncRNAs and the 808 DE mRNAs in the two groups. We chose the common network pairs of the two groups to construct the coexpression network and revealed 97 network pairs comprising 8 dysregulated lncRNAs and 60 dysregulated mRNAs. We found that lncRNA lnc-CCL3L3-1:1 might be involved in the NF-kappa B signaling pathway in C. albicans infection. In conclusion, the aberrantly expressed lncRNAs might play a role in the pathogenesis of C. albicans infection and could be used as therapeutic targets in the future.