RESUMO
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Assuntos
Mudança Climática , Ecossistema , Humanos , Produtos Agrícolas , Carbono , SecasRESUMO
Sustainable Development Goal 14 of the United Nations aims to "conserve and sustainably use the oceans, seas and marine resources for sustainable development". Achieving this goal will require rebuilding the marine life-support systems that deliver the many benefits that society receives from a healthy ocean. Here we document the recovery of marine populations, habitats and ecosystems following past conservation interventions. Recovery rates across studies suggest that substantial recovery of the abundance, structure and function of marine life could be achieved by 2050, if major pressures-including climate change-are mitigated. Rebuilding marine life represents a doable Grand Challenge for humanity, an ethical obligation and a smart economic objective to achieve a sustainable future.
Assuntos
Ecossistema , Espécies em Perigo de Extinção/estatística & dados numéricos , Recuperação e Remediação Ambiental/tendências , Biologia Marinha/tendências , Animais , Extinção Biológica , Peixes , Aquecimento Global/prevenção & controle , Atividades Humanas , HumanosRESUMO
Seagrasses provide multiple ecosystem services and act as intense carbon sinks in coastal regions around the globe but are threatened by multiple anthropogenic pressures, leading to enhanced seagrass mortality that reflects in the spatial self-organization of the meadows. Spontaneous spatial vegetation patterns appear in such different ecosystems as drylands, peatlands, salt marshes, or seagrass meadows, and the mechanisms behind this phenomenon are still an open question in many cases. Here, we report on the formation of vegetation traveling pulses creating complex spatiotemporal patterns and rings in Mediterranean seagrass meadows. We show that these structures emerge due to an excitable behavior resulting from the coupled dynamics of vegetation and porewater hydrogen sulfide, toxic to seagrass, in the sediment. The resulting spatiotemporal patterns resemble those formed in other physical, chemical, and biological excitable media, but on a much larger scale. Based on theory, we derive a model that reproduces the observed seascapes and predicts the annihilation of these circular structures as they collide, a distinctive feature of excitable pulses. We show also that the patterns in field images and the empirically resolved radial profiles of vegetation density and sediment sulfide concentration across the structures are consistent with predictions from the theoretical model, which shows these structures to have diagnostic value, acting as a harbinger of the terminal state of the seagrass meadows prior to their collapse.
Assuntos
Ecossistema , Modelos Teóricos , Áreas Alagadas , Sequestro de Carbono , SulfetosRESUMO
Fear-related pathologies are among the most prevalent psychiatric conditions, having inappropriate learned fear and resistance to extinction as cardinal features. Exposure therapy represents a promising therapeutic approach, the efficiency of which depends on inter-individual variation in fear extinction learning, which neurobiological basis is unknown. We characterized a model of extinction learning, whereby fear-conditioned mice were categorized as extinction (EXT)-success or EXT-failure, according to their inherent ability to extinguish fear. In the lateral amygdala, GluN2A-containing NMDAR are required for LTP and stabilization of fear memories, while GluN2B-containing NMDAR are required for LTD and fear extinction. EXT-success mice showed attenuated LTP, strong LTD and higher levels of synaptic GluN2B, while EXT-failure mice showed strong LTP, no LTD and higher levels of synaptic GluN2A. Neurotrophin 3 (NT3) infusion in the lateral amygdala was sufficient to rescue extinction deficits in EXT-failure mice. Mechanistically, activation of tropomyosin receptor kinase C (TrkC) with NT3 in EXT-failure slices attenuated lateral amygdala LTP, in a GluN2B-dependent manner. Conversely, blocking endogenous NT3-TrkC signaling with TrkC-Fc chimera in EXT-success slices strengthened lateral amygdala LTP. Our data support a key role for the NT3-TrkC system in inter-individual differences in fear extinction in rodents, through modulation of amygdalar NMDAR composition and synaptic plasticity.
Assuntos
Tonsila do Cerebelo , Extinção Psicológica , Medo , Individualidade , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Neurotrofina 3 , Receptor trkC , Receptores de N-Metil-D-Aspartato , Animais , Medo/fisiologia , Extinção Psicológica/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Receptor trkC/metabolismo , Neurotrofina 3/metabolismo , Potenciação de Longa Duração/fisiologia , Transdução de Sinais/fisiologia , Condicionamento Clássico/fisiologiaRESUMO
Mangroves have been converted and degraded for decades. Rates of loss have declined over the past decades, but achieving resilient coastlines requires both conservation and restoration. Here, we outline the challenges for the global restoration of mangroves and what actions could enhance restoration. Ambitious global targets for mangrove restoration, if successful, could deliver global benefits of carbon sequestration, fisheries production, biodiversity, and coastal protection. However, large-scale mangrove planting efforts have often failed, and smaller projects may not deliver landscape-scale benefits, even though they are more suited to community management. Solutions to achieving global targets include reducing risks of large projects and increasing the uptake and effectiveness of smaller projects. Sustainable mangrove restoration requires investment in capacity building in communities and institutions, and mechanisms to match restoration opportunities with prospective supporters and investors. Global reporting standards will support adaptive management and help fully understand and monitor the benefits of mangrove restoration.
Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Sequestro de Carbono , Ecossistema , Pesqueiros , Estudos ProspectivosRESUMO
In Alzheimer's disease (AD), amyloid ß (Aß)-triggered cleavage of TrkB-FL impairs brain-derived neurotrophic factor (BDNF) signaling, thereby compromising neuronal survival, differentiation, and synaptic transmission and plasticity. Using cerebrospinal fluid and postmortem human brain samples, we show that TrkB-FL cleavage occurs from the early stages of the disease and increases as a function of pathology severity. To explore the therapeutic potential of this disease mechanism, we designed small TAT-fused peptides and screened their ability to prevent TrkB-FL receptor cleavage. Among these, a TAT-TrkB peptide with a lysine-lysine linker prevented TrkB-FL cleavage both in vitro and in vivo and rescued synaptic deficits induced by oligomeric Aß in hippocampal slices. Furthermore, this TAT-TrkB peptide improved the cognitive performance, ameliorated synaptic plasticity deficits and prevented Tau pathology progression in vivo in the 5XFAD mouse model of AD. No evidence of liver or kidney toxicity was found. We provide proof-of-concept evidence for the efficacy and safety of this therapeutic strategy and anticipate that this TAT-TrkB peptide has the potential to be a disease-modifying drug that can prevent and/or reverse cognitive deficits in patients with AD.
Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Peptídeos , Receptor trkB , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Receptor trkB/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Peptídeos/farmacologiaRESUMO
Coral reefs, vital ecosystems supporting diverse marine life, are primarily shaped by the clonal expansion of coral colonies. Although the principles of coral clonal growth, involving polyp division for spatial extension, are well-understood, numerical modelling efforts are notably scarce in the literature. In this article, we present a parsimonious numerical model based on the cloning of polyps, using five key parameters to simulate a range of coral shapes. The model is agent-based, where each polyp represents an individual. The colony's surface expansion is dictated by the growth mode parameter (s), guiding the preferred growth direction. Varying s facilitates the emulation of diverse coral shapes, including massive, branching, cauliflower, columnar and tabular colonies. Additionally, we introduce a novel approach for self-regulatory branching, inspired by the intricate mesh-like canal system and internode regularity observed in Acropora species. Through a comprehensive sensitivity analysis, we demonstrate the robustness of our model, paving the way for future applications that incorporate environmental factors, such as light and water flow. Coral colonies are known for their high plasticity, and understanding how individual polyps interact with each other and their surroundings to create the reef structure has been a longstanding question in the field. This model offers a powerful framework for studying these interactions, enabling a future implementation of environmental factors and the possibility of identifying the key mechanisms influencing coral colonies' morphogenesis.
Assuntos
Antozoários , Recifes de Corais , Modelos Biológicos , Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , AnimaisRESUMO
Our ability to assess biodiversity at relevant spatial and temporal scales for informing management is of increasing importance given this is foundational to identify and mitigate the impacts of global change. Collecting baseline information and tracking ecological changes are particularly important for areas experiencing rapid changes and representing data gaps such as Arctic marine ecosystems. Environmental DNA has the potential to provide such data. We extracted environmental DNA from 90 surface sediment samples to assess eukaryote diversity around Greenland and Svalbard using two separate primer pairs amplifying different sections of the 18S rRNA gene. We detected 27 different phyla and 99 different orders and found that temperature and the change in temperature explained the most variation in the community in a single linear model, while latitude, sea ice cover and change in temperature explained the most variation in the community when assessed by individual non-linear models. We identified potential indicator taxa for Arctic climate change, including a terebellid annelid worm. In conclusion, our study demonstrates that environmental DNA offers a feasible method to assess biodiversity and identifies warming as a key driver of differences in biodiversity across these remote ecosystems.
Assuntos
DNA Ambiental , Ecossistema , Biodiversidade , Clima , Sedimentos GeológicosRESUMO
Biological systems occurring in ecologically heterogeneous and spatially discontinuous habitats provide an ideal opportunity to investigate the relative roles of neutral and selective factors in driving lineage diversification. The grey mangroves (Avicennia marina) of Arabia occur at the northern edge of the species' range and are subject to variable, often extreme, environmental conditions, as well as historic large fluctuations in habitat availability and connectivity resulting from Quaternary glacial cycles. Here, we analyse fully sequenced genomes sampled from 19 locations across the Red Sea, the Arabian Sea and the Persian/Arabian Gulf (PAG) to reconstruct the evolutionary history of the species in the region and to identify adaptive mechanisms of lineage diversification. Population structure and phylogenetic analyses revealed marked genetic structure correlating with geographic distance and highly supported clades among and within the seas surrounding the Arabian Peninsula. Demographic modelling showed times of divergence consistent with recent periods of geographic isolation and low marine connectivity during glaciations, suggesting the presence of (cryptic) glacial refugia in the Red Sea and the PAG. Significant migration was detected within the Red Sea and the PAG, and across the Strait of Hormuz to the Arabian Sea, suggesting gene flow upon secondary contact among populations. Genetic-environment association analyses revealed high levels of adaptive divergence and detected signs of multi-loci local adaptation driven by temperature extremes and hypersalinity. These results support a process of rapid diversification resulting from the combined effects of historical factors and ecological selection and reveal mangrove peripheral environments as relevant drivers of lineage diversity.
Assuntos
Avicennia , Filogenia , Avicennia/genética , Arábia , Ecossistema , Oceano ÍndicoRESUMO
The hadopelagic environment remains highly understudied due to the inherent difficulties in sampling at these depths. The use of sediment environmental DNA (eDNA) can overcome some of these restrictions as settled and preserved DNA represent an archive of the biological communities. We use sediment eDNA to assess changes in the community within one of the world's most productive open-ocean ecosystems: the Atacama Trench. The ecosystems around the Atacama Trench have been intensively fished and are affected by climate oscillations, but the understanding of potential impacts on the marine community is limited. We sampled five sites using sediment cores at water depths from 2400 to ~8000 m. The chronologies of the sedimentary record were determined using 210Pbex. Environmental DNA was extracted from core slices and metabarcoding was used to identify the eukaryote community using two separate primer pairs for different sections of the 18S rRNA gene (V9 and V7) effectively targeting pelagic taxa. The reconstructed communities were similar among markers and mainly composed of chordates and members of the Chromista kingdom. Alpha diversity was estimated for all sites in intervals of 15 years (from 1842 to 2018), showing a severe drop in biodiversity from 1970 to 1985 that aligns with one of the strongest known El Niño events and extensive fishing efforts during the time. We find a direct impact of sea surface temperature on the community composition over time. Fish and cnidarian read abundance was examined separately to determine whether fishing had a direct impact, but no direct relation was found. These results demonstrate that sediment eDNA can be a valuable emerging tool providing insight in historical perspectives on ecosystem developments. This study constitutes an important step toward an improved understanding of the importance of environmental and anthropogenic drivers in affecting open and deep ocean communities.
Assuntos
Biodiversidade , DNA Ambiental , Ecossistema , Sedimentos Geológicos , RNA Ribossômico 18S , Sedimentos Geológicos/análise , DNA Ambiental/análise , RNA Ribossômico 18S/genética , Chile , Animais , Código de Barras de DNA Taxonômico , Eucariotos/genética , Organismos Aquáticos/genéticaRESUMO
The ocean's mercury (Hg) content has tripled due to anthropogenic activities, and although the dark ocean (>200 m) has become an important Hg reservoir, concentrations of the toxic and bioaccumulative methylmercury (MeHg) are low and therefore very difficult to measure. As a consequence, the current understanding of the Hg cycle in the deep ocean is severely data-limited, and the factors controlling MeHg, as well as its transformation rates, remain largely unknown. By analyzing 52 globally distributed bathypelagic deep-ocean metagenomes and 26 new metatranscriptomes from the Malaspina Expedition, our study reveals the widespread distribution and expression of bacterial-coding genes merA and merB in the global bathypelagic ocean (â¼4000 m depth). These genes, associated with HgII reduction and MeHg demethylation, respectively, are particularly prevalent within the particle-attached fraction. Moreover, our results indicate that water mass age and the organic matter composition shaped the structure of the communities harboring merA and merB genes living in different particle size fractions, their abundance, and their expression levels. Members of the orders Corynebacteriales, Rhodobacterales, Alteromonadales, Oceanospirillales, Moraxellales, and Flavobacteriales were the main taxonomic players containing merA and merB genes in the deep ocean. These findings, together with our previous results of pure culture isolates of the deep bathypelagic ocean possessing the metabolic capacity to degrade MeHg, indicated that both methylmercury demethylation and HgII reduction likely occur in the global dark ocean, the largest biome in the biosphere.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Compostos de Metilmercúrio/metabolismo , Mercúrio/metabolismo , Água do Mar/microbiologia , Oceanos e Mares , Desmetilação , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismoRESUMO
Epithelial ovarian cancer (EOC) is the gynecological malignant tumor of poorest prognosis and higher mortality rate. Chemotherapy is the base of high-grade serous ovarian cancer (HGSOC) treatment; however, it favors the emergence of chemoresistance and metastasis. Thus, there is an urge to search for new therapeutic targets, such as proteins related to cellular proliferation and invasion. Herein, we investigated the expression profile of claudin-16 (CLDN16 protein and CLDN16 transcript) and its possible functions in EOC. In silico analysis of CLDN16 expression profile was performed using data extracted from GENT2 and GEPIA2 platforms. A retrospective study was carried out with 55 patients to evaluate the expression of CLDN16. The samples were evaluated by immunohistochemistry, immunofluorescence, qRT-PCR, molecular docking, sequencing, and immunoblotting assays. Statistical analyzes were performed using Kaplan-Meier curves, one-way ANOVA, Turkey posttest. Data were analyzed using GraphPad Prism 8.0. In silico experiments showed that CLDN16 is overexpressed in EOC. 80.0% of all EOC types overexpressed CLDN16, of which in 87% of the cases the protein is restricted to cellular cytoplasm. CLDN16 expression was not related to tumor stage, tumor cells differentiation status, tumor responsiveness to cisplatin, or patients' survival rate. When compared to data obtained from in silico analysis regarding EOC stage and degree of differentiation, differences were found in the former but not in the later, neither in survival curves. CLDN16 expression in HGSOC OVCAR-3 cells increased by 1.95-fold (p < 0.001), 2.32-fold (p < 0.001), and 6.57-fold (p < 0.001) via PKC, PI3K, and estrogen pathways, respectively. Altogether, our results suggest that despite the low number of samples included in our in vitro studies, adding to the expression profile findings, we provided a comprehensive study of CLDN16 expression in EOC. Therefore, we hypothesize that CLDN16 is a potential target in the diagnosis and treatment of the disease.
Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Feminino , Humanos , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Estimativa de Kaplan-Meier , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Estudos Retrospectivos , Proteína Quinase C/metabolismoRESUMO
The peptide CIGB-210 inhibits HIV replication, inducing a rearrangement of vimentin intermediate filaments. The assessment of the in vitro serum and plasma stability of this peptide is important to develop an optimal pharmacological formulation. A half-life of 17.68 ± 0.59 min was calculated for CIGB-210 in human serum by reverse-phase high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Eight metabolites of CIGB-210 were identified with this methodology, all of them lacking the N-terminal moiety. A previously developed CIGB-210 in-house competitive ELISA was used to compare the stability of CIGB-210 derivatives containing either D-amino acids, acetylation at the N-terminus, or both modifications. The half-life of CIGB-210 in serum was five times higher when measured by ELISA than by HPLC/MS, and twice higher in plasma as compared to serum. The substitution of D-asparagine on position 6 doubled the half-life, while D-amino acids on positions 8 and 9 did not improve the stability. The acetylation of the N-terminus resulted in a 24-fold more stable peptide in plasma. The positive effect of N-terminal acetylation on CIGB-210 serum stability was confirmed by the HPLC/MS method, as the half-life of the peptide was not reached after 2 h of incubation, which represents more than a 6.8-fold increase in the half-life with respect to the original peptide.
RESUMO
Mitochondria are present in the pre- and post-synaptic regions, providing the energy required for the activity of these very specialized neuronal compartments. Biogenesis of synaptic mitochondria takes place in the cell body, and these organelles are then transported to the synapse by motor proteins that carry their cargo along microtubule tracks. The transport of mitochondria along neurites is a highly regulated process, being modulated by the pattern of neuronal activity and by extracellular cues that interact with surface receptors. These signals act by controlling the distribution of mitochondria and by regulating their activity. Therefore, mitochondria activity at the synapse allows the integration of different signals and the organelles are important players in the response to synaptic stimulation. Herein we review the available evidence regarding the regulation of mitochondrial dynamics by neuronal activity and by neuromodulators, and how these changes in the activity of mitochondria affect synaptic communication.
Assuntos
Mitocôndrias , Neurônios , Mitocôndrias/metabolismo , Neurônios/metabolismo , Organelas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismoRESUMO
Concerns over overexploitation have fueled an ongoing debate on the current state and future prospects of global capture fisheries, associated threats to marine biodiversity, and declining yields available for human consumption. Management reforms have aimed to reduce fishing pressure and recover depleted stocks to biomass and exploitation rates that allow for maximum sustainable yield. Recent analyses suggest that scientifically assessed stocks, contributing over half of global marine fish catch, have, on average, reached or even exceeded these targets, suggesting a fundamental shift in the effectiveness of fisheries governance. However, such conclusions are based on calculations requiring specific choices to average over high interstock variability to derive a global trend. Here we evaluate the robustness of these conclusions by examining the distribution of recovery rates across individual stocks and by applying a diversity of plausible averaging techniques. We show that different methods produce markedly divergent trajectories of global fisheries status, with 4 of 10 methods suggesting that recovery has not yet been achieved, with up to 48% of individual stocks remaining below biomass targets and 40% exploited above sustainable rates. Furthermore, recent rates of recovery are only marginally different from zero, with up to 46% of individual stocks trending downward in biomass and 29% of stocks trending upward in exploitation rate. These results caution against overoptimistic assessments of fisheries writ large and support a precautionary management approach to ensure full rebuilding of depleted fisheries worldwide.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pesqueiros/organização & administração , Peixes/fisiologia , Animais , Biomassa , Pesqueiros/legislação & jurisprudência , Humanos , Internacionalidade , Modelos Biológicos , Oceanos e Mares , Dinâmica PopulacionalRESUMO
Over the last decades, soft corals have been proven a rich source of biologically active compounds, featuring a wide range of chemical structures. Herein, we investigated the chemistry of an alcyonarian of the genus Lemnalia (Neptheidae), specimens of which were collected from the coral reefs near Al Lith, on the south-west coast of Saudi Arabia. A series of chromatographic separations led to the isolation of 31 sesquiterpenes, featuring mainly the nardosinane and neolemnane carbon skeletons, among which three (13, 14 and 28) are new natural products. The metabolites isolated in sufficient amounts were evaluated inâ vitro in human tumor and non-cancerous cell lines for a number of biological activities, including their cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activities, as well as for their effect on androgen receptor (AR)-regulated transcription. Among the tested metabolites, compoundâ 12 showed comparable neuroprotective activity to the positive control N-acetylcysteine, albeit at a 10-fold lower concentration.
Assuntos
Antozoários , Antineoplásicos , Sesquiterpenos , Animais , Humanos , Arábia Saudita , Oceano Índico , Sesquiterpenos/química , Antozoários/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismoRESUMO
AMPA-type receptors for the neurotransmitter glutamate are very dynamic entities, and changes in their synaptic abundance underlie different forms of synaptic plasticity, including long-term synaptic potentiation (LTP), long-term depression (LTD) and homeostatic scaling. The different AMPA receptor subunits (GluA1-GluA4) share a common modular structure and membrane topology, and their intracellular C-terminus tail is responsible for the interaction with intracellular proteins important in receptor trafficking. The latter sequence differs between subunits and contains most sites for post-translational modifications of the receptors, including phosphorylation, O-GlcNAcylation, ubiquitination, acetylation, palmitoylation and nitrosylation, which affect differentially the various subunits. Considering that each single subunit may undergo modifications in multiple sites, and that AMPA receptors may be formed by the assembly of different subunits, this creates multiple layers of regulation of the receptors with impact in synaptic function and plasticity. This review discusses the diversity of mechanisms involved in the post-translational modification of AMPA receptor subunits, and their impact on the subcellular distribution and synaptic activity of the receptors.
Assuntos
Receptores de AMPA , Sinapses , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Processamento de Proteína Pós-TraducionalRESUMO
ISSUES ADDRESSED: People experiencing homelessness and/or complex needs often require targeted health services to address unique vulnerabilities. COVID-19 restrictions acted as a barrier for this group accessing health and alcohol and other drug (AOD) treatment services. The Haymarket Foundation, an accommodation and health facility in Australia, transitioned from in-person AOD-counselling services to online consultations. Clients accessing these services were tracked, from March 2019 to November 2020, to assess the impact of the switch to telehealth on client retention. METHODS: Qualitative analysis of Haymarket clients' service experience surveys and quantitative descriptives of "no-show" (nonattended sessions) rates and survival analysis of client treatment separations were completed to assess the impact of transitioning to telehealth on client retention. RESULTS: Although the initial transition to telehealth in March 2020 minimally impacted client no-show rates, reinstated government restrictions in June/July 2020 coincided with increasing no-shows and a substantial increase in treatment exits without notice, especially amongst males. Qualitative analysis showed clients had mixed feelings towards telehealth: some attributed their dissatisfaction to the inability to build rapport with their counsellor online, or with COVID-19 in general. Others appreciated the availability and genuine care of their counsellors through either setting. CONCLUSIONS: Telehealth may be a feasible replacement for face-to-face AOD counselling for people experiencing homelessness, however further investigation needs to be conducted to understand factors associated with improved client retention. SO WHAT?: This pilot demonstrates telehealth may be a feasible ongoing feature of health promotion for vulnerable high-needs populations, including people experiencing homelessness who use substances.
Assuntos
COVID-19 , Pessoas Mal Alojadas , Telemedicina , Masculino , Humanos , COVID-19/epidemiologia , Estudos de Viabilidade , AconselhamentoRESUMO
BACKGROUND: Global climate change together with growing desertification is leading to increased dust emissions to the atmosphere, drawing attention to possible impacts on marine ecosystems receiving dust deposition. Since microorganisms play important roles in maintaining marine homeostasis through nutrient cycling and carbon flow, detrimental changes in the composition of marine microbiota in response to increased dust input could negatively impact marine health, particularly so in seas located within the Global Dust Belt. Due to its strategic location between two deserts and unique characteristics, the Red Sea provides an attractive semi-enclosed "megacosm" to examine the impacts of large dust deposition on the vastly diverse microbiota in its exceptionally warm oligotrophic waters. RESULTS: We used culture-independent metagenomic approaches to assess temporal changes in the Red Sea microbiota in response to two severe sandstorms, one originated in the Nubian Desert in the summer 2016 and a second one originated in the Libyan Desert in the spring 2017. Despite differences in sandstorm origin and meteorological conditions, both sandstorms shifted bacterial and Archaeal groups in a similar mode. In particular, the relative abundance of autotrophic bacteria declined while those of heterotrophic bacteria, particularly Bacteroidetes, and Archaea increased. The changes peaked within six days from the start of sandstorms, and the community recovered the original assemblage within one month. CONCLUSION: Our results suggest that increased dust emission with expanding desertification could lead to undesirable impacts in ocean function, enhancing heterotrophic processes while reducing autotrophic ones, thereby affecting the marine food web in seas receiving dust deposition.
Assuntos
Poeira , Microbiota , Archaea/genética , Bactérias/genética , Poeira/análise , Oceano Índico , MetagenômicaRESUMO
The aerobic anoxygenic phototrophic (AAP) bacteria are common in most marine environments but their global diversity and biogeography remain poorly characterized. Here, we analyzed AAP communities across 113 globally-distributed surface ocean stations sampled during the Malaspina Expedition in the tropical and subtropical ocean. By means of amplicon sequencing of the pufM gene, a genetic marker for this functional group, we show that AAP communities along the surface ocean were mainly composed of members of the Halieaceae (Gammaproteobacteria), which were adapted to a large range of environmental conditions, and of different clades of the Alphaproteobacteria, which seemed to dominate under particular circumstances, such as in the oligotrophic gyres. AAP taxa were spatially structured within each of the studied oceans, with communities from adjacent stations sharing more taxonomic similarities. AAP communities were composed of a large pool of rare members and several habitat specialists. When compared to the surface ocean prokaryotic and picoeukaryotic communities, it appears that AAP communities display an idiosyncratic global biogeographical pattern, dominated by selection processes and less influenced by dispersal limitation. Our study contributes to the understanding of how AAP communities are distributed in the horizontal dimension and the mechanisms underlying their distribution across the global surface ocean.