Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(23): e202403674, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38647344

RESUMO

The construction of carbonyl compounds via carbonylation reactions using safe CO sources remains a long-standing challenge to synthetic chemists. Herein, we propose a catalyst cascade Scheme in which CO2 is used as a CO surrogate in the carbonylation of benzyl chlorides. Our approach is based on the cooperation between two coexisting catalytic cycles: the CO2-to-CO electroreduction cycle promoted by [Fe(TPP)Cl] (TPP=meso-tetraphenylporphyrin) and an electrochemical carbonylation cycle catalyzed by [Ni(bpy)Br2] (2,2'-bipyridine). As a proof of concept, this protocol allows for the synthesis of symmetric ketones from good to excellent yields in an undivided cell with non-sacrificial electrodes. The reaction can be directly scaled up to gram-scale and operates effectively at a CO2 concentration of 10 %, demonstrating its robustness. Our mechanistic studies based on cyclic voltammetry, IR spectroelectrochemistry and Density Functional Theory calculations suggest a synergistic effect between the two catalysts. The CO produced from CO2 reduction is key in the formation of the [Ni(bpy)(CO)2], which is proposed as the catalytic intermediate responsible for the C-C bond formation in the carbonylation steps.

2.
Curr Radiopharm ; 12(1): 58-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30605068

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia. Neuroimaging methods have widened the horizons for AD diagnosis and therapy. The goals of this work are the synthesis of 2-(3-fluoropropyl)-6-methoxynaphthalene (5) and its [18F]-radiolabeled counterpart ([18F]Amylovis), the in silico and in vitro comparative evaluations of [18F]Amylovis and [11C]Pittsburg compound B (PIB) and the in vivo preclinical evaluation of [18F]Amylovis in transgenic and wild mice. METHODS: Iron-catalysis cross coupling reaction, followed by fluorination and radiofluorination steps were carried out to obtain 5 and 18F-Amylovis. Protein/Aß plaques binding, biodistribution, PET/CT Imaging and immunohistochemical studies were conducted in healthy/transgenic mice. RESULTS: The synthesis of 5 was successful obtained. Comparative in silico studies predicting that 5 should have affinity to the Aß-peptide, mainly through π-π interactions. According to a dynamic simulation study the ligand-Aß peptide complexes are stable in simulation-time (ΔG = -5.31 kcal/mol). [18F]Amylovis was obtained with satisfactory yield, high radiochemical purity and specific activity. The [18F]Amylovis log Poct/PBS value suggests its potential ability for crossing the blood brain barrier (BBB). According to in vitro assays, [18F]Amylovis has an adequate stability in time. Higher affinity to Aß plaques were found for [18F]Amylovis (Kd 0.16 nmol/L) than PIB (Kd 8.86 nmol/L) in brain serial sections of 3xTg-AD mice. Biodistribution in healthy mice showed that [18F]Amylovis crosses the BBB with rapid uptake (7 %ID/g at 5 min) and good washout (0.11±0.03 %ID/g at 60 min). Comparative PET dynamic studies of [18F]Amylovis in healthy and transgenic APPSwe/PS1dE9 mice, revealed a significant high uptake in the mice model. CONCLUSION: The in silico, in vitro and in vivo results justify that [18F]Amylovis should be studied as a promissory PET imaging agent to detect the presence of Aß senile plaques.


Assuntos
Radioisótopos de Carbono/química , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacologia , Naftalenos/química , Neuroimagem/métodos , Placa Amiloide/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioquímica/métodos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacologia , Animais , Simulação por Computador , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Distribuição Tecidual
3.
Beilstein J Nanotechnol ; 9: 2628-2643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416913

RESUMO

Titanium oxide nanotubes (TNTs) were anodically grown in ethylene glycol electrolyte. The influence of the anodization time on their physicochemical and photoelectrochemical properties was evaluated. Concomitant with the anodization time, the NT length, fluorine content, and capacitance of the space charge region increased, affecting the opto-electronic properties (bandgap, bathochromic shift, band-edge position) and surface hydrophilicity of TiO2 NTs. These properties are at the origin of the photocatalytic activity (PCA), as proved with the photooxidation of methylene blue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA