Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(11): 6441-6458, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499483

RESUMO

Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.


Assuntos
Metiltransferases , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Metiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/química , Metilação , RNA Viral/metabolismo , RNA Viral/química , RNA Viral/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , Humanos , Ligação Proteica , Capuzes de RNA/metabolismo , Capuzes de RNA/genética , Regulação Alostérica , COVID-19/virologia , COVID-19/genética , Multimerização Proteica , Replicação Viral/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/química , Proteínas Virais Reguladoras e Acessórias
2.
J Biol Chem ; 299(8): 104889, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286041

RESUMO

Human neutrophil elastase (HNE) plays a pivotal role in innate immunity, inflammation, and tissue remodeling. Aberrant proteolytic activity of HNE contributes to organ destruction in various chronic inflammatory diseases including emphysema, asthma, and cystic fibrosis. Therefore, elastase inhibitors could alleviate the progression of these disorders. Here, we used the systematic evolution of ligands by exponential enrichment to develop ssDNA aptamers that specifically target HNE. We determined the specificity of the designed inhibitors and their inhibitory efficacy against HNE using biochemical and in vitro methods, including an assay of neutrophil activity. Our aptamers inhibit the elastinolytic activity of HNE with nanomolar potency and are highly specific for HNE and do not target other tested human proteases. As such, this study provides lead compounds suitable for the evaluation of their tissue-protective potential in animal models.


Assuntos
Aptâmeros de Nucleotídeos , Elastase de Leucócito , Inibidores de Serina Proteinase , Humanos , Fibrose Cística/tratamento farmacológico , Enfisema/tratamento farmacológico , Elastase de Leucócito/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Sensibilidade e Especificidade , Ativação Enzimática/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Células Cultivadas
3.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298883

RESUMO

Staphylococcus aureus is a common opportunistic pathogen of humans and livestock that causes a wide variety of infections. The success of S. aureus as a pathogen depends on the production of an array of virulence factors including cysteine proteases (staphopains)-major secreted proteases of certain strains of the bacterium. Here, we report the three-dimensional structure of staphopain C (ScpA2) of S. aureus, which shows the typical papain-like fold and uncovers a detailed molecular description of the active site. Because the protein is involved in the pathogenesis of a chicken disease, our work provides the foundation for inhibitor design and potential antimicrobial strategies against this pathogen.


Assuntos
Cisteína Proteases , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Cisteína Proteases/metabolismo , Infecções Estafilocócicas/microbiologia , Papaína/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/química
4.
Cell Commun Signal ; 20(1): 10, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057808

RESUMO

BACKGROUND: A universal adaptor protein, MyD88, orchestrates the innate immune response by propagating signals from toll-like receptors (TLRs) and interleukin-1 receptor (IL-1R). Receptor activation seeds MyD88 dependent formation of a signal amplifying supramolecular organizing center (SMOC)-the myddosome. Alternatively spliced variant MyD88S, lacking the intermediate domain (ID), exhibits a dominant negative effect silencing the immune response, but the mechanistic understanding is limited. METHODS: Luciferase reporter assay was used to evaluate functionality of MyD88 variants and mutants. The dimerization potential of MyD88 variants and myddosome nucleation process were monitored by co-immunoprecipitation and confocal microscopy. The ID secondary structure was characterized in silico employing I-TASSER server and in vitro using nuclear magnetic resonance (NMR) and circular dichroism (CD). RESULTS: We show that MyD88S is recruited to the nucleating SMOC and inhibits its maturation by interfering with incorporation of additional components. Biophysical analysis suggests that important functional role of ID is not supported by a well-defined secondary structure. Mutagenesis identifies Tyr116 as the only essential residue within ID required for myddosome nucleation and signal propagation (NF-κB activation). CONCLUSIONS: Our results argue that the largely unstructured ID of MyD88 is not only a linker separating toll-interleukin-1 receptor (TIR) homology domain and death domain (DD), but contributes intermolecular interactions pivotal in MyD88-dependent signaling. The dominant negative effect of MyD88S relies on quenching the myddosome nucleation and associated signal transduction. Video abstract.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Fator 88 de Diferenciação Mieloide/metabolismo , Linhagem Celular , Humanos , Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Estrutura Terciária de Proteína , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo
5.
Biochem Biophys Res Commun ; 557: 288-293, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33894416

RESUMO

Glycosomal malate dehydrogenase from Trypanosoma cruzi (tcgMDH) catalyzes the oxidation/reduction of malate/oxaloacetate, a crucial step of the glycolytic process occurring in the glycosome of the human parasite. Inhibition of tcgMDH is considered a druggable trait for the development of trypanocidal drugs. Sequence comparison of MDHs from different organisms revealed a distinct insertion of a prolin rich 9-mer (62-KLPPVPRDP-70) in tcgMDH as compared to other eukaryotic MDHs. Crystal structure of tcgMDH is solved here at 2.6 Å resolution with Rwork/Rfree values of 0.206/0.216. The tcgMDH forms homo-dimer with the solvation free energy (ΔGo) gain of -9.77 kcal/mol. The dimeric form is also confirmed in solution by biochemical assays, chemical-crosslinking and dynamic light scattering. The inserted 9-mer adopts a structure of a solvent accessible loop in the vicinity of NAD+ binding site. The distinct sequence and structural feature of tcgMDH, revealed in the present report, provides an anchor point for the development of inhibitors specific for tcgMDH, possible trypanocidal agents of the future.


Assuntos
Malato Desidrogenase/química , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Difusão Dinâmica da Luz , Escherichia/metabolismo , Malato Desidrogenase/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes , Alinhamento de Sequência , Trypanosoma cruzi/química , Trypanosoma cruzi/enzimologia
6.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200765

RESUMO

BacSp222 is a multifunctional peptide produced by Staphylococcus pseudintermedius 222. This 50-amino acid long peptide belongs to subclass IId of bacteriocins and forms a four-helix bundle molecule. In addition to bactericidal functions, BacSp222 possesses also features of a virulence factor, manifested in immunomodulatory and cytotoxic activities toward eukaryotic cells. In the present study, we demonstrate that BacSp222 is produced in several post-translationally modified forms, succinylated at the ε-amino group of lysine residues. Such modifications have not been previously described for any bacteriocins. NMR and circular dichroism spectroscopy studies have shown that the modifications do not alter the spatial structure of the peptide. At the same time, succinylation significantly diminishes its bactericidal and cytotoxic potential. We demonstrate that the modification of the bacteriocin is an effect of non-enzymatic reaction with a highly reactive intracellular metabolite, i.e., succinyl-coenzyme A. The production of succinylated forms of the bacteriocin depends on environmental factors and on the access of bacteria to nutrients. Our study indicates that the production of succinylated forms of bacteriocin occurs in response to the changing environment, protects producer cells against the autotoxicity of the excreted peptide, and limits the pathogenicity of the strain.


Assuntos
Bacteriocinas/química , Bacteriocinas/farmacologia , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Staphylococcus/fisiologia , Acil Coenzima A/metabolismo , Animais , Antibacterianos/farmacologia , Humanos , Lisina/química , Lisina/metabolismo , Macrófagos/patologia , Camundongos , Neutrófilos/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Processamento de Proteína Pós-Traducional
7.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672341

RESUMO

Accumulating evidence suggests that six proteases encoded in the spl operon of a dangerous human pathogen, Staphylococcus aureus, may play a role in virulence. Interestingly, SplA, B, D, and E have complementary substrate specificities while SplF remains to be characterized in this regard. Here, we describe the prerequisites of a heterologous expression system for active SplF protease and characterize the enzyme in terms of substrate specificity and its structural determinants. Substrate specificity of SplF is comprehensively profiled using combinatorial libraries of peptide substrates demonstrating strict preference for long aliphatic sidechains at the P1 subsite and significant selectivity for aromatic residues at P3. The crystal structure of SplF was provided at 1.7 Å resolution to define the structural basis of substrate specificity of SplF. The obtained results were compared and contrasted with the characteristics of other Spl proteases determined to date to conclude that the spl operon encodes a unique extracellular proteolytic system.


Assuntos
Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Metionina/metabolismo , Modelos Moleculares , Peptídeo Hidrolases/genética , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato
8.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443436

RESUMO

The clinical success of PD-1/PD-L1 immune checkpoint targeting antibodies in cancer is followed by efforts to develop small molecule inhibitors with better penetration into solid tumors and more favorable pharmacokinetics. Here we report the crystal structure of a macrocyclic peptide inhibitor (peptide 104) in complex with PD-L1. Our structure shows no indication of an unusual bifurcated binding mode demonstrated earlier for another peptide of the same family (peptide 101). The binding mode relies on extensive hydrophobic interactions at the center of the binding surface and an electrostatic patch at the side. An interesting sulfur/π interaction supports the macrocycle-receptor binding. Overall, our results allow a better understanding of forces guiding macrocycle affinity for PD-L1, providing a rationale for future structure-based inhibitor design and rational optimization.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas de Checkpoint Imunológico/metabolismo , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Células CHO , Cricetulus , Humanos , Células Jurkat , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica
9.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339113

RESUMO

Glycerol is an organic compound that can be utilized as an alternative source of carbon by various organisms. One of the ways to assimilate glycerol by the cell is the phosphorylative catabolic pathway in which its activation is catalyzed by glycerol kinase (GK) and glycerol-3-phosphate (G3P) is formed. To date, several GK crystal structures from bacteria, archaea, and unicellular eukaryotic parasites have been solved. Herein, we present a series of crystal structures of GK from Chaetomium thermophilum (CtGK) in apo and glycerol-bound forms. In addition, we show the feasibility of an ADP-dependent glucokinase (ADPGK)-coupled enzymatic assay to measure the CtGK activity. New structures described in our work provide structural insights into the GK catalyzed reaction in the filamentous fungus and set the foundation for understanding the glycerol metabolism in eukaryotes.


Assuntos
Chaetomium/enzimologia , Proteínas Fúngicas/química , Glicerol Quinase/química , Domínio Catalítico , Estabilidade Enzimática , Proteínas Fúngicas/metabolismo , Glicerol Quinase/metabolismo , Simulação de Dinâmica Molecular
10.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575583

RESUMO

Kallikrein-related peptidases (KLKs) and matrix metalloproteinases (MMPs) are secretory proteinases known to proteolytically process components of the extracellular matrix, modulating the pericellular environment in physiology and in pathologies. The interconnection between these families remains elusive. To assess the cross-activation of these families, we developed a peptide, fusion protein-based exposition system (Cleavage of exposed amino acid sequences, CleavEx) aiming at investigating the potential of KLK14 to recognize and hydrolyze proMMP sequences. Initial assessment identified ten MMP activation domain sequences which were validated by Edman degradation. The analysis revealed that membrane-type MMPs (MT-MMPs) are targeted by KLK14 for activation. Correspondingly, proMMP14-17 were investigated in vitro and found to be effectively processed by KLK14. Again, the expected neo-N-termini of the activated MT-MMPs was confirmed by Edman degradation. The effectiveness of proMMP activation was analyzed by gelatin zymography, confirming the release of fully active, mature MT-MMPs upon KLK14 treatment. Lastly, MMP14 was shown to be processed on the cell surface by KLK14 using murine fibroblasts overexpressing human MMP14. Herein, we propose KLK14-mediated selective activation of cell-membrane located MT-MMPs as an additional layer of their regulation. As both, KLKs and MT-MMPs, are implicated in cancer, their cross-activation may constitute an important factor in tumor progression and metastasis.


Assuntos
Precursores Enzimáticos/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Hidrólise , Calicreínas/química , Metaloproteinase 14 da Matriz/genética , Camundongos , Porphyromonas gingivalis , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo
11.
Molecules ; 25(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053673

RESUMO

Streptococcus pneumoniae is a frequent bacterial pathogen of the human respiratory tract causing pneumonia, meningitis and sepsis, a serious healthcare burden in all age groups. S. pneumoniae lacks complete respiratory chain and relies on carbohydrate fermentation for energy generation. One of the essential components for this includes the mannose phosphotransferase system (Man-PTS), which plays a central role in glucose transport and exhibits a broad specificity for a range of hexoses. Importantly, Man-PTS is involved in the global regulation of gene expression for virulence determinants. We herein report the three-dimensional structure of the EIIA domain of S. pneumoniae mannose phosphotransferase system (SpEIIA-Man). Our structure shows a dimeric arrangement of EIIA and reveals a detailed molecular description of the active site. Since PTS transporters are exclusively present in microbes and sugar transporters have already been suggested as valid targets for antistreptococcal antibiotics, our work sets foundation for the future development of antimicrobial strategies against Streptococcus pneumoniae.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Manose/metabolismo , Fosfotransferases/química , Fosfotransferases/metabolismo , Streptococcus pneumoniae/enzimologia , Cristalografia por Raios X , Especificidade por Substrato
12.
J Biol Chem ; 293(28): 11088-11099, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29784881

RESUMO

In higher eukaryotes, several ATP-utilizing enzymes known as hexokinases activate glucose in the glycolysis pathway by phosphorylation to glucose 6-phosphate. In contrast to canonical hexokinases, which use ATP, ADP-dependent glucokinase (ADPGK) catalyzes noncanonical phosphorylation of glucose to glucose 6-phosphate using ADP as a phosphate donor. Initially discovered in Archaea, the human homolog of ADPGK was described only recently. ADPGK's involvement in modified bioenergetics of activated T cells has been postulated, and elevated ADPGK expression has been reported in various cancer tissues. However, the physiological role of ADPGK is still poorly understood, and effective ADPGK inhibitors still await discovery. Here, we show that 8-bromo-substituted adenosine nucleotide inhibits human ADPGK. By solving the crystal structure of archaeal ADPGK in complex with 8-bromoadenosine phosphate (8-Br-AMP) at 1.81 Å resolution, we identified the mechanism of inhibition. We observed that 8-Br-AMP is a competitive inhibitor of ADPGK and that the bromine substitution induces marked structural changes within the protein's active site by engaging crucial catalytic residues. The results obtained using the Jurkat model of activated human T cells suggest its moderate activity in a cellular setting. We propose that our structural insights provide a critical basis for rational development of novel ADPGK inhibitors.


Assuntos
Adenosina/análogos & derivados , Glucoquinase/química , Adenosina/química , Adenosina/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Glucoquinase/antagonistas & inibidores , Glucose/metabolismo , Humanos , Células Jurkat , Conformação Proteica
13.
Arch Biochem Biophys ; 671: 1-7, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31108049

RESUMO

Maternal Embryonic Leucine Zipper Kinase (MELK) is overexpressed in various tumors which has been convincingly linked to tumor cell survival. As such, MELK became an interesting target for pharmacological intervention. In this study we present the crystal structure of MELK in complex with dorsomorphin, an inhibitor of VEGFR and AMPK. By defining the mechanistic details of ligand recognition we identify a key residue (Cys89) at the hinge region of MELK responsible for positioning of the ligand at the catalytic pocket. This conclusion is supported by kinetic characterization of Cys89 mutants which show decreased affinity towards both ATP and dorsomorphin. The detailed binding mode of dorsomorphin characterized in this study defines a minimal requirement for MELK ligands, a valuable information for future rational design of inhibitors based on entirely new scaffolds.


Assuntos
Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/metabolismo , Pirimidinas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Humanos , Estrutura Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Pirazóis/química , Pirimidinas/química
14.
Arch Biochem Biophys ; 671: 130-142, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31276659

RESUMO

Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos
15.
J Enzyme Inhib Med Chem ; 34(1): 638-643, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727784

RESUMO

Inhibitors of serine proteases are not only extremely useful in the basic research but are also applied extensively in clinical settings. Using Systematic Evolution of Ligands by Exponential Enrichment (SELEX) approach we developed a family of novel, single-stranded DNA aptamers capable of specific trypsin inhibition. Our most potent candidate (T24) and its short version (T59) were thoroughly characterised in terms of efficacy. T24 and T59 efficiently inhibited bovine trypsin with Ki of 176 nM and 475 nM, respectively. Interestingly, in contrast to the majority of known trypsin inhibitors, the selected aptamers have superior specificity and did not interact with porcine trypsin or any human proteases tested. These included plasmin and thrombin characterised by trypsin-like substrate specificity. Our results demonstrate that SELEX may be successfully employed in the development of potent and specific DNA based protease inhibitors.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , DNA de Cadeia Simples/efeitos dos fármacos , Inibidores da Tripsina/farmacologia , Tripsina/metabolismo , Animais , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Bovinos , DNA de Cadeia Simples/metabolismo , Relação Dose-Resposta a Droga , Humanos , Relação Estrutura-Atividade , Suínos , Inibidores da Tripsina/síntese química , Inibidores da Tripsina/química
16.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569356

RESUMO

Glucose phosphorylating enzymes are crucial in the regulation of basic cellular processes, including metabolism and gene expression. Glucokinases and hexokinases provide a pool of phosphorylated glucose in an adenosine diphosphate (ADP)- and ATP-dependent manner to shape the cell metabolism. The glucose processing enzymes from Kluyveromyces lactis are poorly characterized despite the emerging contribution of this yeast strain to industrial and laboratory scale biotechnology. The first reports on K. lactis glucokinase (KlGlk1) positioned the enzyme as an essential component required for glucose signaling. Nevertheless, no biochemical and structural information was available until now. Here, we present the first crystal structure of KlGlk1 together with biochemical characterization, including substrate specificity and enzyme kinetics. Additionally, comparative analysis of the presented structure and the prior structures of lactis hexokinase (KlHxk1) demonstrates the potential transitions between open and closed enzyme conformations upon ligand binding.


Assuntos
Glucoquinase/química , Kluyveromyces/enzimologia , Modelos Moleculares , Conformação Proteica , Glucoquinase/genética , Glucoquinase/metabolismo , Glucose/metabolismo , Cinética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Especificidade por Substrato
17.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925705

RESUMO

Kallikrein 13 (KLK13) was first identified as an enzyme that is downregulated in a subset of breast tumors. This serine protease has since been implicated in a number of pathological processes including ovarian, lung and gastric cancers. Here we report the design, synthesis and deconvolution of libraries of internally quenched fluorogenic peptide substrates to determine the specificity of substrate binding subsites of KLK13 in prime and non-prime regions (according to the Schechter and Berger convention). The substrate with the consensus sequential motive ABZ-Val-Arg-Phe-Arg-ANB-NH2 demonstrated selectivity towards KLK13 and was successfully converted into an activity-based probe by the incorporation of a chloromethylketone warhead and biotin bait. The compounds described may serve as suitable tools to detect KLK13 activity in diverse biological samples, as exemplified by overexpression experiments and targeted labeling of KLK13 in cell lysates and saliva. In addition, we describe the development of selective activity-based probes targeting KLK13, to our knowledge the first tool to analyze the presence of the active enzyme in biological samples.


Assuntos
Ensaios Enzimáticos/métodos , Calicreínas/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Cinética , Neoplasias/enzimologia , Biblioteca de Peptídeos , Peptídeos/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
18.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331093

RESUMO

Coronaviruses are responsible for upper and lower respiratory tract infections in humans. It is estimated that 1 to 10% of the population suffers annually from cold-like symptoms related to infection with human coronavirus NL63 (HCoV-NL63), an alphacoronavirus. The nucleocapsid (N) protein, the major structural component of the capsid, facilitates RNA packing, links the capsid to the envelope, and is also involved in multiple other processes, including viral replication and evasion of the immune system. Although the role of N protein in viral replication is relatively well described, no structural data are currently available regarding the N proteins of alphacoronaviruses. Moreover, our understanding of the mechanisms of RNA binding and nucleocapsid formation remains incomplete. In this study, we solved the crystal structures of the N- and C-terminal domains (NTD, residues 10 to 140, and CTD, residues 221 to 340, respectively) of the N protein of HCoV-NL63, both at a 1.5-Å resolution. Based on our structure of NTD solved here, we proposed and experimentally evaluated a model of RNA binding. The structure of the CTD reveals the mode of N protein dimerization. Overall, this study expands our understanding of the initial steps of N protein-nucleic acid interaction and may facilitate future efforts to control the associated infections.IMPORTANCE Coronaviruses are responsible for the common cold and other respiratory tract infections in humans. According to multiple studies, 1 to 10% of the population is infected each year with HCoV-NL63. Viruses are relatively simple organisms composed of a few proteins and the nucleic acids that carry the information determining their composition. The nucleocapsid (N) protein studied in this work protects the nucleic acid from the environmental factors during virus transmission. This study investigated the structural arrangement of N protein, explaining the first steps of its interaction with nucleic acid at the initial stages of virus structure assembly. The results expand our understanding of coronavirus physiology and may facilitate future efforts to control the associated infections.


Assuntos
Coronavirus Humano NL63/química , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Coronavirus Humano NL63/fisiologia , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , RNA Viral/metabolismo , Montagem de Vírus , Replicação Viral
19.
Biochem Biophys Res Commun ; 488(2): 259-265, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28433636

RESUMO

Lipases play an important role in physiological metabolism and diseases, and also have multiple industrial applications. Rational modification of lipase specificity may increase the commercial utility of this group of enzymes, but is hindered by insufficient mechanistic understanding. Here, we report the 2.0 Å resolution crystal structure of a mono- and di-acylglycerols lipase from Malassezia globosa (MgMDL2). Interestingly, residues Phe278 and Glu282 were found to involve in substrate recognition because mutation on each residue led to convert MgMDL2 to a triacylglycerol (TAG) lipase. The Phe278Ala and Glu282Ala mutants also acquired ability to synthesize TAGs by esterification of glycerol and fatty acids. By in silicon analysis, steric hindrance of these residues seemed to be key factors for the altered substrate specificity. Our work may shed light on understanding the unique substrate selectivity mechanism of mono- and di-acylglycerols lipases, and provide a new insight for engineering biocatalysts with desired catalytic behaviors for biotechnological application.


Assuntos
Lipase/química , Lipase/metabolismo , Malassezia/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Especificidade por Substrato
20.
Mol Cell Proteomics ; 14(10): 2577-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26179345

RESUMO

Monoclonal antibodies targeting GD2 ganglioside (GD2) have recently been approved for the treatment of high risk neuroblastoma and are extensively evaluated in clinics in other indications. This study illustrates how a therapeutic antibody distinguishes between different types of gangliosides present on normal and cancer cells and informs how synthetic peptides can imitate ganglioside in its binding to the antibody. Using high resolution crystal structures we demonstrate that the ganglioside recognition by a model antibody (14G2a) is based primarily on an extended network of direct and water molecule mediated hydrogen bonds. Comparison of the GD2-Fab structure with that of a ligand free antibody reveals an induced fit mechanism of ligand binding. These conclusions are validated by directed mutagenesis and allowed structure guided generation of antibody variant with improved affinity toward GD2. Contrary to the carbohydrate, both evaluated mimetic peptides utilize a "key and lock" interaction mechanism complementing the surface of the antibody binding groove exactly as found in the empty structure. The interaction of both peptides with the Fab relies considerably on hydrophobic contacts however, the detailed connections differ significantly between the peptides. As such, the evaluated peptide carbohydrate mimicry is defined primarily in a functional and not in structural manner.


Assuntos
Anticorpos Monoclonais , Gangliosídeos , Fragmentos Fab das Imunoglobulinas , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Gangliosídeos/química , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Camundongos , Mimetismo Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA