Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chaos ; 33(2): 023144, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859231

RESUMO

Many natural systems show emergent phenomena at different scales, leading to scaling regimes with signatures of deterministic chaos at large scales and an apparently random behavior at small scales. These features are usually investigated quantitatively by studying the properties of the underlying attractor, the compact object asymptotically hosting the trajectories of the system with their invariant density in the phase space. This multi-scale nature of natural systems makes it practically impossible to get a clear picture of the attracting set. Indeed, it spans over a wide range of spatial scales and may even change in time due to non-stationary forcing. Here, we combine an adaptive decomposition method with extreme value theory to study the properties of the instantaneous scale-dependent dimension, which has been recently introduced to characterize such temporal and spatial scale-dependent attractors in turbulence and astrophysics. To provide a quantitative analysis of the properties of this metric, we test it on the well-known low-dimensional deterministic Lorenz-63 system perturbed with additive or multiplicative noise. We demonstrate that the properties of the invariant set depend on the scale we are focusing on and that the scale-dependent dimensions can discriminate between additive and multiplicative noise despite the fact that the two cases have exactly the same stationary invariant measure at large scales. The proposed formalism can be generally helpful to investigate the role of multi-scale fluctuations within complex systems, allowing us to deal with the problem of characterizing the role of stochastic fluctuations across a wide range of physical systems.

2.
Chaos ; 33(1): 013101, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36725661

RESUMO

Hurricanes-and more broadly tropical cyclones-are high-impact weather phenomena whose adverse socio-economic and ecosystem impacts affect a considerable part of the global population. Despite our reasonably robust meteorological understanding of tropical cyclones, we still face outstanding challenges for their numerical simulations. Consequently, future changes in the frequency of occurrence and intensity of tropical cyclones are still debated. Here, we diagnose possible reasons for the poor representation of tropical cyclones in numerical models, by considering the cyclones as chaotic dynamical systems. We follow 197 tropical cyclones which occurred between 2010 and 2020 in the North Atlantic using the HURDAT2 and ERA5 data sets. We measure the cyclones instantaneous number of active degrees of freedom (local dimension) and the persistence of their sea-level pressure and potential vorticity fields. During the most intense phases of the cyclones, and specifically when cyclones reach hurricane strength, there is a collapse of degrees of freedom and an increase in persistence. The large dependence of hurricanes dynamical characteristics on intensity suggests the need for adaptive parametrization schemes which take into account the dependence of the cyclone's phase, in analogy with high-dissipation intermittent events in turbulent flows.

3.
Philos Trans A Math Phys Eng Sci ; 380(2218): 20210092, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35034496

RESUMO

The multifractal model of turbulence (MFM) and the three-dimensional Navier-Stokes equations are blended together by applying the probabilistic scaling arguments of the former to a hierarchy of weak solutions of the latter. This process imposes a lower bound on both the multifractal spectrum [Formula: see text], which appears naturally in the Large Deviation formulation of the MFM, and on [Formula: see text] the standard scaling parameter. These bounds respectively take the form: (i) [Formula: see text], which is consistent with Kolmogorov's four-fifths law ; and (ii) [Formula: see text]. The latter is significant as it prevents solutions from approaching the Navier-Stokes singular set of Caffarelli, Kohn and Nirenberg. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.

4.
Phys Rev Lett ; 119(1): 014502, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731756

RESUMO

We report the experimental evidence of the existence of a random attractor in a fully developed turbulent swirling flow. By defining a global observable which tracks the asymmetry in the flux of angular momentum imparted to the flow, we can first reconstruct the associated turbulent attractor and then follow its route towards chaos. We further show that the experimental attractor can be modeled by stochastic Duffing equations, that match the quantitative properties of the experimental flow, namely, the number of quasistationary states and transition rates among them, the effective dimensions, and the continuity of the first Lyapunov exponents. Such properties can be recovered neither using deterministic models nor using stochastic differential equations based on effective potentials obtained by inverting the probability distributions of the experimental global observables. Our findings open the way to low-dimensional modeling of systems featuring a large number of degrees of freedom and multiple quasistationary states.

5.
Phys Rev Lett ; 112(11): 114501, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702376

RESUMO

We consider homogeneous shear-stratified turbulence in a rotating frame, that exhibits complex nonlinear dynamics. Since the analysis of relative orientation between coupled fluctuating fields helps us to understand turbulence dynamics, we focus on the alignment properties of both the velocity and gravity fields with the potential vorticity gradient. With the help of statistical mechanics, we define a vector field which plays a role in the analogous so-called cross-helicity in magnetohydrodynamics. High-resolution direct numerical simulations of developed homogeneous baroclinic turbulence are performed, and a detailed analysis of probability density functions for cross-helicity is provided. A net preference for positive cross-helicity is shown to be related to a new alignment mechanism. We argue that the analysis of cross-helicity is crucial for understanding the dynamics of buoyancy driven flows.

6.
Phys Rev Lett ; 111(23): 234502, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476277

RESUMO

We study the influence on steady turbulent states of the forcing in a von Karman flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities to low-dimensional systems. We suggest that this forcing dependence may be applicable to other turbulent systems.

7.
Phys Rev Lett ; 109(2): 024503, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030166

RESUMO

We provide experimental and numerical evidence of in-blades vortices in the von Kármán swirling flow. We estimate the associated kinematic α-effect tensor and show that it is compatible with recent models of the von Kármán sodium (VKS) dynamo. We further show that depending on the relative frequency of the two impellers, the dominant dynamo mechanism may switch from α2 to α - Ω dynamo. We discuss some implications of these results for VKS experiments.

8.
Phys Rev Lett ; 108(14): 144501, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540795

RESUMO

We report the first experimental observation of a spatially localized dynamo magnetic field, a common feature of astrophysical dynamos and convective dynamo simulations. When the two propellers of the von Kármán sodium experiment are driven at frequencies that differ by 15%, the mean magnetic field's energy measured close to the slower disk is nearly 10 times larger than the one close to the faster one. This strong localization of the magnetic field when a symmetry of the forcing is broken is in good agreement with a prediction based on the interaction between a dipolar and a quadrupolar magnetic mode.

9.
Phys Rev Lett ; 105(21): 214501, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231308

RESUMO

We experimentally study the susceptibility to symmetry breaking of a closed turbulent von Kármán swirling flow from Re=150 to Re≃106. We report a divergence of this susceptibility at an intermediate Reynolds number Re=Re(χ)≃90,000 which gives experimental evidence that such a highly space and time fluctuating system can undergo a "phase transition." This transition is furthermore associated with a peak in the amplitude of fluctuations of the instantaneous flow symmetry corresponding to intermittencies between spontaneously symmetry breaking metastable states.

10.
Phys Rev E ; 102(6-1): 063105, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466085

RESUMO

Two scalar fields characterizing respectively pseudo-Hölder exponents and local energy transfers are used to capture the topology and the dynamics of the velocity fields in areas of lesser regularity. The present analysis is conducted using velocity fields from two direct numerical simulations of the Navier-Stokes equations in a triply periodic domain. A typical irregular structure is obtained by averaging over the 213 most irregular events. Such structure is similar to a Burgers vortex, with nonaxisymmetric corrections. A possible explanation for such asymmetry is provided by a detailed time-resolved analysis of birth and death of the irregular structures, which shows that they are connected to vortex interactions, possibly vortex reconnection.

11.
Phys Rev E ; 99(5-1): 053114, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212522

RESUMO

It is still not known whether solutions to the Navier-Stokes equation can develop singularities from regular initial conditions. In particular, a classical and unsolved problem is to prove that the velocity field is Hölder continuous with some exponent h<1 (i.e., not necessarily differentiable) at small scales. Different methods have already been proposed to explore the regularity properties of the velocity field and the estimate of its Hölder exponent h. A first method is to detect potential singularities via extrema of an "inertial" dissipation D*=lim_{ℓ→0}D_{ℓ}^{I} that is independent of viscosity [Duchon and Robert, Nonlinearity 13, 249 (2000)0951-771510.1088/0951-7715/13/1/312]. Another possibility is to use the concept of multifractal analysis that provides fractal dimensions of the subspace of exponents h. However, the multifractal analysis is a global statistical method that only provides global information about local Hölder exponents, via their probability of occurrence. In order to explore the local regularity properties of a velocity field, we have developed a local statistical analysis that estimates locally the Hölder continuity. We have compared outcomes of our analysis with results using the inertial energy dissipation D_{ℓ}^{I}. We observe that the dissipation term indeed gets bigger for velocity fields that are less regular according to our estimates. The exact spatial distribution of the local Hölder exponents however shows nontrivial behavior and does not exactly match the distribution of the inertial dissipation.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(2 Pt 2): 026211, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18850925

RESUMO

Chaotic mixing in a closed vessel is studied experimentally and numerically in different two-dimensional (2D) flow configurations. For a purely hyperbolic phase space, it is well known that concentration fluctuations converge to an eigenmode of the advection-diffusion operator and decay exponentially with time. We illustrate how the unstable manifold of hyperbolic periodic points dominates the resulting persistent pattern. We show for different physical viscous flows that, in the case of a fully chaotic Poincaré section, parabolic periodic points at the walls lead to slower (algebraic) decay. A persistent pattern, the backbone of which is the unstable manifold of parabolic points, can be observed. However, slow stretching at the wall forbids the rapid propagation of stretched filaments throughout the whole domain, and hence delays the formation of an eigenmode until it is no longer experimentally observable. Inspired by the baker's map, we introduce a 1D model with a parabolic point that gives a good account of the slow decay observed in experiments. We derive a universal decay law for such systems parametrized by the rate at which a particle approaches the no-slip wall.

13.
Phys Rev E ; 97(5-1): 053101, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906866

RESUMO

We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 2): 046308, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711930

RESUMO

We develop variational principles to study the structure and the stability of equilibrium states of axisymmetric flows. We show that the axisymmetric Euler equations for inviscid flows admit an infinite number of steady state solutions. We find their general form and provide analytical solutions in some special cases. The system can be trapped in one of these steady states as a result of an inviscid violent relaxation. We show that the stable steady states maximize a (nonuniversal) function while conserving energy, helicity, circulation, and angular momentum (robust constraints). This can be viewed as a form of generalized selective decay principle. We derive relaxation equations which can be used as numerical algorithm to construct nonlinearly dynamically stable stationary solutions of axisymmetric flows. We also develop a thermodynamical approach to predict the equilibrium state at some fixed coarse-grained scale. We show that the resulting distribution can be divided in two parts: one universal coming from the conservation of robust invariants and one non-universal determined by the initial conditions through the fragile invariants (for freely evolving systems) or by a prior distribution encoding nonideal effects such as viscosity, small-scale forcing, and dissipation (for forced systems). Finally, we derive a parametrization of inviscid mixing to describe the dynamics of the system at the coarse-grained scale. A conceptual interest of this axisymmetric model is to be intermediate between two-dimensional (2D) and 3D turbulence.

15.
Nat Commun ; 7: 12466, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27578459

RESUMO

The three-dimensional incompressible Navier-Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier-Stokes equation.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 2B): 036311, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15903578

RESUMO

We present strategies based upon optimization principles in the case of the axisymmetric equations of magnetohydrodynamics (MHD). We derive the equilibrium state by using a minimum energy principle under the constraints of the MHD axisymmetric equations. We also propose a numerical algorithm based on a maximum energy dissipation principle to compute in a consistent way the nonlinearly dynamically stable equilibrium states. Then, we develop the statistical mechanics of such flows and recover the same equilibrium states giving a justification of the minimum energy principle. We find that fluctuations obey a Gaussian shape and we make the link between the conservation of the Casimirs on the coarse-grained scale and the process of energy dissipation. We contrast these results with those of two-dimensional hydrodynamical turbulence where the equilibrium state maximizes a H function at fixed energy and circulation and where the fluctuations are nonuniversal.

17.
Artigo em Inglês | MEDLINE | ID: mdl-26764812

RESUMO

We present hydrodynamic and magnetohydrodynamic (MHD) simulations of liquid sodium flow with the PLUTO compressible MHD code to investigate influence of magnetic boundary conditions on the collimation of helicoidal motions. We use a simplified cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multiblades impeller inspired by those used in the Von-Kármán-sodium (VKS) experiment. We show that the impinging of the large-scale flow upon the impeller generates a coherent helicoidal vortex inside the blades, located at a distance from the upstream blade piloted by the incident angle of the flow. This vortex collimates any existing magnetic field lines leading to an enhancement of the radial magnetic field that is stronger for ferromagnetic than for conducting blades. The induced magnetic field modifies locally the velocity fluctuations, resulting in an enhanced helicity. This process possibly explains why dynamo action is more easily triggered in the VKS experiment when using soft iron impellers.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(3 Pt 2): 036308, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14524891

RESUMO

Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number Re keeping fixed a strongly stable, volume-mean density stratification. At smaller values of Re, the turbulent velocity is mainly horizontal, and the momentum balance is approximately cyclostrophic and hydrostatic. This is a regime dominated by so-called pancake vortices, with only a weak excitation of internal gravity waves and large values of the local Richardson number Ri everywhere. At higher values of Re there are successive transitions to (a) overturning motions with local reversals in the density stratification and small or negative values of Ri; (b) growth of a horizontally uniform vertical shear flow component; and (c) growth of a large-scale vertical flow component. Throughout these transitions, pancake vortices continue to dominate the large-scale part of the turbulence, and the gravity wave component remains weak except at small scales.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(6 Pt 2): 065301, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11415163

RESUMO

We use high resolution numerical simulations over several hundred of turnover times to study the influence of small scale dissipation onto vortex statistics in 2D decaying turbulence. A scaling regime is detected when the scaling laws are expressed in units of mean vorticity and integral scale, like predicted in Carnevale et al., Phys. Rev. Lett. 66, 2735 (1991), and it is observed that viscous effects spoil this scaling regime. The exponent controlling the decay of the number of vortices shows some trends toward xi=1, in agreement with a recent theory based on the Kirchhoff model [C. Sire and P. H. Chavanis, Phys. Rev. E 61, 6644 (2000)]. In terms of scaled variables, the vortices have a similar profile with a functional form related to the Fermi-Dirac distribution.

20.
Rev Sci Instrum ; 85(10): 103908, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362417

RESUMO

The Superfluid High REynolds von Kármán experiment facility exploits the capacities of a high cooling power refrigerator (400 W at 1.8 K) for a large dimension von Kármán flow (inner diameter 0.78 m), which can work with gaseous or subcooled liquid (He-I or He-II) from room temperature down to 1.6 K. The flow is produced between two counter-rotating or co-rotating disks. The large size of the experiment allows exploration of ultra high Reynolds numbers based on Taylor microscale and rms velocity [S. B. Pope, Turbulent Flows (Cambridge University Press, 2000)] (Rλ > 10000) or resolution of the dissipative scale for lower Re. This article presents the design and first performance of this apparatus. Measurements carried out in the first runs of the facility address the global flow behavior: calorimetric measurement of the dissipation, torque and velocity measurements on the two turbines. Moreover first local measurements (micro-Pitot, hot wire,…) have been installed and are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA