Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 299(2): 102873, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621625

RESUMO

Variants of isocitrate dehydrogenase (IDH) 1 and 2 (IDH1/2) alter metabolism in cancer cells by catalyzing the NADPH-dependent reduction of 2-oxoglutarate (2OG) to (2R)-hydroxyglutarate. However, it is unclear how derivatives of 2OG can affect cancer cell metabolism. Here, we used synthetic C3- and C4-alkylated 2OG derivatives to investigate the substrate selectivities of the most common cancer-associated IDH1 variant (R132H IDH1), of two cancer-associated IDH2 variants (R172K IDH2, R140Q IDH2), and of WT IDH1/2. Absorbance-based, NMR, and electrochemical assays were employed to monitor WT IDH1/2 and IDH1/2 variant-catalyzed 2OG derivative turnover in the presence and absence of 2OG. Our results reveal that 2OG derivatives can serve as substrates of the investigated IDH1/2 variants, but not of WT IDH1/2, and have the potential to act as 2OG-competitive inhibitors. Kinetic parameters reveal that some 2OG derivatives, including the natural product 3-methyl-2OG, are equally or even more efficient IDH1/2 variant substrates than 2OG. Furthermore, NMR and mass spectrometry studies confirmed IDH1/2 variant-catalyzed production of alcohols in the cases of the 3-methyl-, 3-butyl-, and 3-benzyl-substituted 2OG derivatives; a crystal structure of 3-butyl-2OG with an IDH1 variant (R132C/S280F IDH1) reveals active site binding. The combined results highlight the potential for (i) IDH1/2 variant-catalyzed reduction of 2-oxoacids other than 2OG in cells, (ii) modulation of IDH1/2 variant activity by 2-oxoacid natural products, including some present in common foods, (iii) inhibition of IDH1/2 variants via active site binding rather than the established allosteric mode of inhibition, and (iv) possible use of IDH1/2 variants as biocatalysts.


Assuntos
Isocitrato Desidrogenase , Ácidos Cetoglutáricos , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Neoplasias/metabolismo , Especificidade por Substrato , Ligação Proteica/efeitos dos fármacos , Cristalografia
2.
ACS Chem Biol ; 17(10): 2753-2768, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36098557

RESUMO

TRIM33 is a member of the tripartite motif (TRIM) family of proteins, some of which possess E3 ligase activity and are involved in the ubiquitin-dependent degradation of proteins. Four of the TRIM family proteins, TRIM24 (TIF1α), TRIM28 (TIF1ß), TRIM33 (TIF1γ) and TRIM66, contain C-terminal plant homeodomain (PHD) and bromodomain (BRD) modules, which bind to methylated lysine (KMen) and acetylated lysine (KAc), respectively. Here we investigate the differences between the two isoforms of TRIM33, TRIM33α and TRIM33ß, using structural and biophysical approaches. We show that the N1039 residue, which is equivalent to N140 in BRD4(1) and which is conserved in most BRDs, has a different orientation in each isoform. In TRIM33ß, this residue coordinates KAc, but this is not the case in TRIM33α. Despite these differences, both isoforms show similar affinities for H31-27K18Ac, and bind preferentially to H31-27K9Me3K18Ac. We used this information to develop an AlphaScreen assay, with which we have identified four new ligands for the TRIM33 PHD-BRD cassette. These findings provide fundamental new information regarding which histone marks are recognized by both isoforms of TRIM33 and suggest starting points for the development of chemical probes to investigate the cellular function of TRIM33.


Assuntos
Histonas , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Lisina/metabolismo , Peptídeo T/metabolismo , Ligantes , Proteínas de Ligação a DNA/metabolismo , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Structure ; 17(5): 703-12, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19446526

RESUMO

Among the four DNA bases, guanine is particularly vulnerable to oxidative damage and the most common oxidative product, 7,8-dihydro-8-oxoguanine (8-oxoG), is the most prevalent lesion observed in DNA molecules. Fortunately, 8-oxoG is recognized and excised by the 8-oxoguanine DNA glycosylase (Ogg) of the base excision repair pathway. Ogg enzymes are divided into three separate families, namely, Ogg1, Ogg2, and archaeal GO glycosylase (AGOG). To date, structures of members of both Ogg1 and AGOG families are known but no structural information is available for members of Ogg2. Here we describe the first crystal structures of two archaeal Ogg2: Methanocaldococcus janischii Ogg and Sulfolobus solfataricus Ogg. A structural comparison with OGG1 and AGOG suggested that the C-terminal lysine of Ogg2 may play a key role in discriminating between guanine and 8-oxoG. This prediction was substantiated by measuring the glycosylase/lyase activity of a C-terminal deletion mutant of MjaOgg.


Assuntos
Proteínas Arqueais/química , DNA Glicosilases/química , Guanina/análogos & derivados , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Arqueais/metabolismo , DNA Glicosilases/metabolismo , Guanina/química , Guanina/metabolismo , Methanococcales/enzimologia , Methanococcales/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Sulfolobus solfataricus/enzimologia , Sulfolobus solfataricus/metabolismo
4.
Protein Eng Des Sel ; 17(8): 635-46, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15377782

RESUMO

UDP-GalNAc:polypeptide alphaN-acetylgalactosaminyltransferases (ppGaNTases) transfer GalNAc from UDP-GalNAc to Ser or Thr. Structural features underlying their enzymatic activity and their specificity are still unidentified. In order to get some insight into the donor substrate recognition, we used a molecular modelling approach on a portion of the catalytic site of the bovine ppGaNTase-T1. Fold recognition methods identified as appropriate templates the bovine alpha1,3galactosyltransferase and the human alpha1,3N-acetylgalactosaminyltransferase. A model of the ppGaNTase-T1 nucleotide-sugar binding site was built into which the UDP-GalNAc and the Mn2+ cation were docked. UDP-GalNAc fits best in a conformation where the GalNAc is folded back under the phosphates and is maintained in that special conformation through hydrogen bonds with R193. The ribose is found in van der Waals contacts with F124 and L189. The uracil is involved in a stacking interaction with W129 and forms a hydrogen bond with N126. The Mn2+ is found in coordination both with the phosphates of UDP and the DXH motif of the enzyme. Amino acids in contact with UDP-GalNAc in the model have been mutated and the corresponding soluble forms of the enzyme expressed in yeast. Their kinetic constants confirm the importance of these amino acids in donor substrate interactions.


Assuntos
Substituição de Aminoácidos/genética , Modelos Químicos , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/genética , Mutação Puntual/genética , Uridina Difosfato N-Acetilgalactosamina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Bovinos , Expressão Gênica , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/genética , N-Acetilgalactosaminiltransferases/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Serina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Treonina/metabolismo , Uridina Difosfato N-Acetilgalactosamina/metabolismo
5.
ChemMedChem ; 9(4): 699-705, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24504667

RESUMO

An X-ray crystal structure of Kelch-like ECH-associated protein (Keap1) co-crystallised with (1S,2R)-2-[(1S)-1-[(1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)methyl]-1,2,3,4-tetrahydroisoquinolin-2-carbonyl]cyclohexane-1-carboxylic acid (compound (S,R,S)-1 a) was obtained. This X-ray crystal structure provides breakthrough experimental evidence for the true binding mode of the hit compound (S,R,S)-1 a, as the ligand orientation was found to differ from that of the initial docking model, which was available at the start of the project. Crystallographic elucidation of this binding mode helped to focus and drive the drug design process more effectively and efficiently.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas do Citoesqueleto/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Isoquinolinas/farmacologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Ftalimidas/farmacologia , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Modelos Moleculares , Estrutura Molecular , Ftalimidas/síntese química , Ftalimidas/química , Relação Estrutura-Atividade
6.
DNA Repair (Amst) ; 11(9): 714-25, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22789755

RESUMO

Formamidopyrimidine-DNA glycosylase (Fpg; MutM) is a DNA repair enzyme widely distributed in bacteria. Fpg recognizes and excises oxidatively modified purines, 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxoguanine (8-oxoG), with similar excision kinetics. It exhibits some lesser activity toward 8-oxoadenine. Fpg enzymes are also present in some plant and fungal species. The eukaryotic Fpg homologs exhibit little or no activity on DNA containing 8-oxoG, but they recognize and process its oxidation products, guanidinohydantoin (Gh) and spiroiminohydantoin (Sp). To date, several structures of bacterial Fpg enzymes unliganded or in complex with DNA containing a damaged base have been published but there is no structure of a eukaryotic Fpg. Here we describe the first crystal structure of a plant Fpg, Arabidopsis thaliana (AthFpg), unliganded and bound to DNA containing an abasic site analog, tetrahydrofuran (THF). Although AthFpg shares a common architecture with other Fpg glycosylases, it harbors a zincless finger, previously described in a subset of Nei enzymes, such as human NEIL1 and Mimivirus Nei1. Importantly the "αF-ß9/10 loop" capping 8-oxoG in the active site of bacterial Fpg is very short in AthFpg. Deletion of a segment encompassing residues 213-229 in Escherichia coli Fpg (EcoFpg) and corresponding to the "αF-ß9/10 loop" does not affect the recognition and removal of oxidatively damaged DNA base lesions, with the exception of 8-oxoG. Although the exact role of the loop remains to be further explored, it is now clear that this protein segment is specific to the processing of 8-oxoG.


Assuntos
Proteínas de Arabidopsis/química , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/química , Guanina/análogos & derivados , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Adutos de DNA/química , DNA-Formamidopirimidina Glicosilase/genética , DNA-Formamidopirimidina Glicosilase/metabolismo , Furanos/química , Guanina/metabolismo , Cinética , Dados de Sequência Molecular , Mutação Puntual , Estrutura Terciária de Proteína
7.
J Mol Biol ; 412(1): 22-34, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21781974

RESUMO

Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5'-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5'-G, which can no longer serve as a template for primer elongation [Aller, P., Rould, M. A., Hogg, M, Wallace, S. S. & Doublié S. (2007). A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc. Natl. Acad. Sci. USA, 104, 814-818.]. Several studies showed that in the sequence context 5'-C-Tg-purine, Tg is more likely to be bypassed by Klenow fragment, an A-family DNA polymerase. We set out to investigate the role of sequence context in Tg bypass in a B-family polymerase and to solve the crystal structures of the bacteriophage RB69 DNA polymerase in complex with Tg-containing DNA in the three remaining sequence contexts: 5'-A-Tg-G, 5'-T-Tg-G, and 5'-C-Tg-G. A combination of several factors-including the associated exonuclease activity, the nature of the 3' and 5' bases surrounding Tg, and the cis-trans interconversion of Tg-influences Tg bypass. We also visualized for the first time the structure of a well-ordered exonuclease complex, allowing us to identify and confirm the role of key residues (Phe123, Met256, and Tyr257) in strand separation and in the stabilization of the primer strand in the exonuclease site.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Timina/análogos & derivados , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Timina/química , Timina/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA