Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 19849-19859, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37978924

RESUMO

Soils are under the threat of a multitude of anthropogenic factors affecting the complex interplay of various physical and hydrological soil processes and properties. One such factor is the group of surface-active compounds. Surfactants have a broad range of applications and can reduce solid-liquid interfacial forces and increase wettability and dispersion of particles. Surfactant effects are context-dependent, giving rise to a wide range of reported effects on different soil processes and properties. Here, we evaluate the evidence base of surfactant research on 11 hydrological and physical soil variables. Our goal was to identify knowledge gaps and test the robustness of the proposed surfactant effects. We found that the current knowledge base is insufficient to reach strong data-backed conclusions about the effects of surfactants in soils. We identified a unique case of bias in the data as a result of conflated patterns from laboratory and field studies. We could not support the hypothesis that the surfactant charge determines soil effects for any of the tested soil variables. We believe that further experiments on surfactant-mediated effects on soil properties and processes are urgently required, paying attention, in particular, to improving experimental design and data reporting standards.


Assuntos
Poluentes do Solo , Solo , Tensoativos , Molhabilidade , Humanos , Fenômenos Físicos , Solo/química , Poluentes do Solo/química , Tensoativos/química
2.
New Phytol ; 227(5): 1505-1518, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32368801

RESUMO

Anthropogenic atmospheric deposition can increase nutrient supply in the most remote ecosystems, potentially affecting soil biodiversity. Arbuscular mycorrhizal fungal (AMF) communities rapidly respond to simulated soil eutrophication in tropical forests. Yet the limited spatio-temporal extent of such manipulations, together with the often unrealistically high fertilization rates employed, impedes generalization of such responses. We sequenced mixed root AMF communities within a seven year-long fully factorial nitrogen (N) and phosphorus (P) addition experiment, replicated at three tropical montane forests in southern Ecuador with differing environmental characteristics. We hypothesized: strong shifts in community composition and species richness after long-term fertilization, site- and clade-specific responses to N vs P additions depending on local soil fertility and clade life history traits respectively. Fertilization consistently shifted AMF community composition across sites, but only reduced richness of Glomeraceae. Compositional changes were mainly driven by increases in P supply while richness reductions were observed only after combined N and P additions. We conclude that moderate increases of N and P exert a mild but consistent effect on tropical AMF communities. To predict the consequences of these shifts, current results need to be supplemented with experiments that characterize local species-specific AMF functionality.


Assuntos
Micorrizas , Ecossistema , Equador , Florestas , Fungos , Fósforo , Raízes de Plantas , Solo , Microbiologia do Solo
3.
New Phytol ; 224(2): 936-948, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31355954

RESUMO

The phylogenetic depth at which arbuscular mycorrhizal (AM) fungi harbor a coherent ecological niche is unknown, which has consequences for operational taxonomic unit (OTU) delineation from sequence data and the study of their biogeography. We tested how changes in AM fungi community composition across habitats (beta diversity) vary with OTU phylogenetic resolution. We inferred exact sequence variants (ESVs) to resolve phylotypes at resolutions finer than provided by traditional sequence clustering and analyzed beta diversity profiles up to order-level sequence clusters. At the ESV level, we detected the environmental predictors revealed with traditional OTUs or at higher genetic distances. However, the correlation between environmental predictors and community turnover steeply increased at a genetic distance of c. 0.03 substitutions per site. Furthermore, we observed a turnover of either closely or distantly related taxa (respectively at or above 0.03 substitutions per site) along different environmental gradients. This study suggests that different axes of AM fungal ecological niche are conserved at different phylogenetic depths. Delineating AM fungal phylotypes using DNA sequences should screen different phylogenetic resolutions to better elucidate the factors that shape communities and predict the fate of AM symbioses in a changing environment.


Assuntos
Biodiversidade , Micorrizas/genética , Filogenia , Microbiologia do Solo , DNA Fúngico/genética , Bases de Dados Factuais , Micobioma , Micorrizas/classificação , Análise de Sequência de DNA
5.
Environ Microbiol Rep ; 14(5): 775-784, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36085412

RESUMO

Root associated fungal (RAF) communities can exert strong effects on plant communities and are potentially sensitive to shifts in soil fertility. As increased atmospheric nitrogen (N) and phosphorus (P) deposition can alter the nutrient balance in natural ecosystems, we assessed the response of RAF communities to a fertilization experiment deployed on a highly diverse Andean forest. The stand level fine root fraction was sampled after 7 years of systematic N and P additions and RAF communities were characterized by a deep sequencing approach. We expected that fertilization will enhance competition of fungal taxa for limiting nutrients, thus eliciting diversity reductions and alterations in the structure of RAF communities. Fertilization treatments did not reduce RAF richness but affected community composition. At the phylum level fertilization reduced richness exclusively among Glomeromycota. In contrast, N and P additions (alone or in combination) altered the composition of several fungal phyla. The lack of a generalized response to long-term fertilization among RAF lineages suggests that most of these lineages will not be directly and immediately affected by the increasing rates of atmospheric N and P deposition expected for this region by 2050.


Assuntos
Nitrogênio , Fósforo , Ecossistema , Florestas , Nitrogênio/análise , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA