Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuroimage ; 226: 117286, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32992003

RESUMO

T2*-weighted gradient-echo sequences count among the most widely used techniques in neuroimaging and offer rich magnitude and phase contrast. The susceptibility effects underlying this contrast scale with B0, making T2*-weighted imaging particularly interesting at high field. High field also benefits baseline sensitivity and thus facilitates high-resolution studies. However, enhanced susceptibility effects and high target resolution come with inherent challenges. Relying on long echo times, T2*-weighted imaging not only benefits from enhanced local susceptibility effects but also suffers from increased field fluctuations due to moving body parts and breathing. High resolution, in turn, renders neuroimaging particularly vulnerable to motion of the head. This work reports the implementation and characterization of a system that aims to jointly address these issues. It is based on the simultaneous operation of two control loops, one for field stabilization and one for motion correction. The key challenge with this approach is that the two loops both operate on the magnetic field in the imaging volume and are thus prone to mutual interference and potential instability. This issue is addressed at the levels of sensing, timing, and control parameters. Performance assessment shows the resulting system to be stable and exhibit adequate loop decoupling, precision, and bandwidth. Simultaneous field and motion control is then demonstrated in examples of T2*-weighted in vivo imaging at 7T.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Retroalimentação , Humanos , Movimento (Física)
2.
Magn Reson Med ; 79(2): 770-778, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28556247

RESUMO

PURPOSE: To assess the potential of a real-time field-control (FC) system for mitigating effects of spatiotemporal field fluctuations in quantitative susceptibility mapping (QSM) at 7 T. METHODS: Magnitude, phase, and QSM images of phantoms and healthy volunteers were acquired under standard conditions and under induced field perturbation (FP) (phantoms: periodic water-bottle displacement; volunteers: deep breathing and forearm movement) with and without FC, which continuously detects and minimizes magnetic-field variations. RESULTS: Field control successfully eliminated FP-induced impairment of phantom image quality and deviations from a linear susceptibility increase for increasing gadolinium concentration in a Gd dilution series (y = 320x - 0.60, R2 = 0.93 for the scan with FP and FC versus y = 259x - 0.54, R2 = 0.78 for the scan with FP and no FC (slope literature value: 326 ppm L/mol)). Similarly, in volunteers, FC allowed a recovery of a FP-induced loss of identifiable brain structures and reduced the relative change of mean susceptibilities and standard deviations (93 ± 53% to 34 ± 46%) in all regions of interests with respect to the reference scan. CONCLUSIONS: Real-time FC improved the delineation of brain structures and the match of susceptibility values with reference values obtained without FP. Magn Reson Med 79:770-778, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas
3.
Magn Reson Med ; 78(4): 1607-1622, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27797105

RESUMO

PURPOSE: The goal of this contribution is to enhance the fidelity and switching speed of gradient and shim fields by advancing pre-emphasis toward broadband and full cross-term correction. THEORY AND METHODS: The proposed approach is based on viewing gradient and shim chains as linear, time-invariant (LTI) systems. Pre-emphasis is accomplished by inversion of a broadband digital system model. In the multiple-channel case, it amounts to a matrix of broadband filters that perform concerted self- and cross-term correction. This approach is demonstrated with gradients and shims up to the third order in a 7 Tesla whole-body MR system. RESULTS: Pre-emphasis by LTI model inversion is first verified by studying settling speeds and response behavior without and with the correction. It is then demonstrated for rapid shim updating, achieving substantially enhanced fidelity of field dynamics and shim settling within approximately 1 ms. In single-shot echo-planar imaging (EPI) acquisitions in vivo, this benefit is shown to translate into enhanced geometric fidelity. CONCLUSIONS: The fidelity of gradient and shim dynamics can be greatly enhanced by pre-emphasis based on inverting a general LTI system model. Permitting shim settling on the millisecond scale, broadband multiple-channel pre-emphasis promises to render higher-order shimming fully versatile at the level of MRI sequence design. Magn Reson Med 78:1607-1622, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Humanos , Modelos Lineares , Modelos Biológicos , Imagens de Fantasmas
4.
NMR Biomed ; 30(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28678353

RESUMO

T2 * mapping offers access to a number of important structural and physiological tissue parameters. It is robust against RF field variations and overall signal scaling. However, T2 * measurement is highly sensitive to magnetic field errors, including perturbations caused by breathing motion at high baseline field. The goal of this work is to assess this issue in T2 * mapping of the brain and to study the benefit of field stabilization by feedback field control. T2 * quantification in the brain was investigated by phantom and in vivo measurements at 7 T. Repeated measurements were made with and without feedback field control using NMR field sensing and dynamic third-order shim actuation. The precision and reliability of T2 * quantification was assessed by studying variation across repeated measurements as well as fitting errors. Breathing effects were found to introduce significant error in T2 * mapping results. Field control mitigates this problem substantially. In a phantom it virtually eliminates the effects of emulated breathing fluctuations in the head. In vivo it enhances the structural fidelity of T2 * maps and reduces fitting residuals along with standard deviation. In conclusion, feedback field control improves the fidelity of T2 * mapping in the presence of field perturbations. It is an effective means of countering bulk susceptibility effects of breathing and hence holds particular promise for efforts to leverage high field for T2 * studies in vivo.


Assuntos
Retroalimentação , Imageamento por Ressonância Magnética/métodos , Adulto , Humanos , Masculino , Imagens de Fantasmas
5.
Magn Reson Med ; 76(2): 430-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26307944

RESUMO

PURPOSE: Real-time field control can serve to reduce respiratory field perturbations during T2 * imaging at high fields. This work investigates the effectiveness of this approach in relation to key variables such as patient physique, breathing patterns, slice location, and the choice of sequence. METHODS: To cover variation in physical constitution and breathing behavior, volunteers with a wide range of body-mass-indices were asked to breathe either normally or deeply during T2 *-weighted image acquisition at 7T. Ensuing field fluctuation was countered by real-time field control or merely recorded in reference experiments. The impact of the control system on image quality was assessed by classifying and grading artifacts related to field fluctuation. RESULTS: The amplitude of respiratory field changes and related artifacts were generally stronger for subjects with higher body-mass-index and for lower slices. Field control was found effective at mitigating all five types of artifacts that were studied. Overall image quality was systematically improved. Residual artifacts in low slices are attributed to insufficient spatial order of the control system. CONCLUSION: Real-time field control was found to be a robust means of countering respiratory field perturbations in variable conditions encountered in high-field brain imaging. Reducing net fluctuation, it generally expands the feasibility of high-field T2 * imaging toward challenging patients and brain regions. Magn Reson Med 76:430-439, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Algoritmos , Sistemas Computacionais , Campos Eletromagnéticos , Feminino , Humanos , Masculino , Radiometria/métodos , Reprodutibilidade dos Testes , Mecânica Respiratória , Sensibilidade e Especificidade
6.
Magn Reson Med ; 73(2): 884-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24634192

RESUMO

PURPOSE: MR imaging and spectroscopy require a highly stable, uniform background field. The field stability is typically limited by hardware imperfections, external perturbations, or field fluctuations of physiological origin. The purpose of the present work is to address these issues by introducing spatiotemporal field stabilization based on real-time sensing and feedback control. METHODS: An array of NMR field probes is used to sense the field evolution in a whole-body MR system concurrently with regular system operation. The field observations serve as inputs to a proportional-integral controller that governs correction currents in gradient and higher-order shim coils such as to keep the field stable in a volume of interest. RESULTS: The feedback system was successfully set up, currently reaching a minimum latency of 20 ms. Its utility is first demonstrated by countering thermal field drift during an EPI protocol. It is then used to address respiratory field fluctuations in a T2 *-weighted brain exam, resulting in substantially improved image quality. CONCLUSION: Feedback field control is an effective means of eliminating dynamic field distortions in MR systems. Third-order spatial control at an update time of 100 ms has proven sufficient to largely eliminate thermal and breathing effects in brain imaging at 7 Tesla.


Assuntos
Encéfalo/anatomia & histologia , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
7.
Magn Reson Med ; 73(5): 1833-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24903278

RESUMO

PURPOSE: Magnetic field fluctuations caused by subject motion, such as breathing or limb motion, can degrade image quality in brain MRI, especially at high field strengths. The purpose of this study was to investigate the feasibility of retrospectively correcting for such physiological field perturbations based on concurrent field monitoring. THEORY AND METHODS: High-resolution T2*-weighted gradient-echo images of the brain were acquired at 7T with subjects performing different breathing and hand movement patterns. Field monitoring with a set of (19) F NMR probes distributed around the head was performed in two variants: concurrently with imaging or as a single field measurement per readout. The measured field fluctuations were then accounted for in the image reconstruction. RESULTS: Significant field fluctuations due to motion were observed in all subjects, resulting in severe artifacts in uncorrected images. The artifacts were largely removed by reconstruction based on field monitoring. Accounting for field perturbations up to the 1st spatial order was generally sufficient to recover good image quality. CONCLUSIONS: It has been demonstrated that artifacts due to physiologically induced dynamic field perturbations can be greatly reduced by retrospective image correction based on field monitoring. The necessity to perform such correction is greatest at high fields and for field-sensitive techniques such as T2*-weighted imaging.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino
8.
Magn Reson Med ; 71(5): 1657-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23798466

RESUMO

PURPOSE: Magnetic resonance spectroscopy (MRS) experiments rely on a homogeneous and stable magnetic field within the sample. Field homogeneity is typically optimized by static B0 shimming while reproducible effects from dynamic field variation are commonly diminished by means of gradient system calibration as well as calibration based on non-water suppressed reference data. However, residual encoding deficiencies from incomplete calibration and nonreproducible field perturbations deteriorate the quality of the obtained data. To overcome this problem, we propose to adapt higher-order feedback field control based on NMR field probes for its application in MRS. METHODS: To allow for field measurements simultaneously with the spectroscopy readout, radiofrequency-shielded field probes were employed. The setup was evaluated in vitro and tested in vivo for single-voxel MRS at 7T to correct for field perturbations that occur due to subject breathing and limb motion. RESULTS: The in vitro experiments showed an effective field control during the MRS sequence. The resulting spectroscopy data were free of spurious signal and the achieved field stabilization improved the spectral resolution in vitro and in vivo. CONCLUSION: High-field MRS is limited by nonreproducible field perturbations for which spatiotemporal field feedback provides a solution without compromising sequence timing and efficiency.


Assuntos
Algoritmos , Artefatos , Espectroscopia de Prótons por Ressonância Magnética/instrumentação , Espectroscopia de Prótons por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA