Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 16(2): 110-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25560970

RESUMO

Retinoic acid (RA) signalling has a central role during vertebrate development. RA synthesized in specific locations regulates transcription by interacting with nuclear RA receptors (RARs) bound to RA response elements (RAREs) near target genes. RA was first implicated in signalling on the basis of its teratogenic effects on limb development. Genetic studies later revealed that endogenous RA promotes forelimb initiation by repressing fibroblast growth factor 8 (Fgf8). Insights into RA function in the limb serve as a paradigm for understanding how RA regulates other developmental processes. In vivo studies have identified RAREs that control repression of Fgf8 during body axis extension or activation of homeobox (Hox) genes and other key regulators during neuronal differentiation and organogenesis.


Assuntos
Extremidades/crescimento & desenvolvimento , Transdução de Sinais/genética , Tretinoína/metabolismo , Animais , Padronização Corporal/genética , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento , Vertebrados/metabolismo
2.
Genes Dev ; 31(13): 1325-1338, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794185

RESUMO

Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1-4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications.


Assuntos
Linhagem da Célula/genética , Coração/embriologia , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Organogênese/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Cardiopatias Congênitas/genética , Humanos , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Mutação , Sementes , Xenopus laevis/embriologia
3.
Front Neuroendocrinol ; 71: 101099, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37647946

RESUMO

It is well established that retinoic acid receptors (RARs) function as nuclear receptors that control gene expression in response to binding of the ligand retinoic acid (RA). However, some studies have proposed that RAR-alpha (RARa) controls synaptic plasticity via non-genomic effects outside the nucleus, i.e. effects on mRNA translation of GluA1, a sub-unit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. In order to support this non-genomic mechanism, studies have reported RARa knockout mice or treatment with pharmacological levels of RA and RAR antagonists to propose that RARa is required to control normal synaptic plasticity. A major shortcoming of the non-genomic hypothesis is that there have been no mutational studies showing that RARa can bind the GluA1 mRNA to control GLUA1 protein levels in a non-genomic manner. Also, without a genetic study that removes the endogenous ligand RA, it is impossible to conclude that RARa and its ligand RA control synaptic plasticity through a non-genomic signaling mechanism.


Assuntos
Receptores do Ácido Retinoico , Tretinoína , Camundongos , Animais , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ligantes , Tretinoína/metabolismo , Tretinoína/farmacologia , Receptor alfa de Ácido Retinoico , Plasticidade Neuronal/fisiologia
4.
PLoS Biol ; 18(5): e3000719, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421711

RESUMO

Identification of target genes that mediate required functions downstream of transcription factors is hampered by the large number of genes whose expression changes when the factor is removed from a specific tissue and the numerous binding sites for the factor in the genome. Retinoic acid (RA) regulates transcription via RA receptors bound to RA response elements (RAREs) of which there are thousands in vertebrate genomes. Here, we combined chromatin immunoprecipitation sequencing (ChIP-seq) for epigenetic marks and RNA-seq on trunk tissue from wild-type and Aldh1a2-/- embryos lacking RA synthesis that exhibit body axis and forelimb defects. We identified a relatively small number of genes with altered expression when RA is missing that also have nearby RA-regulated deposition of histone H3 K27 acetylation (H3K27ac) (gene activation mark) or histone H3 K27 trimethylation (H3K27me3) (gene repression mark) associated with conserved RAREs, suggesting these genes function downstream of RA. RA-regulated epigenetic marks were identified near RA target genes already known to be required for body axis and limb formation, thus validating our approach; plus, many other candidate RA target genes were found. Nuclear receptor 2f1 (Nr2f1) and nuclear receptor 2f2 (Nr2f2) in addition to Meis homeobox 1 (Meis1) and Meis homeobox 2 (Meis2) gene family members were identified by our approach, and double knockouts of each family demonstrated previously unknown requirements for body axis and/or limb formation. A similar epigenetic approach can be used to determine the target genes for any transcriptional regulator for which a knockout is available.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética/métodos , Código das Histonas , Tretinoína/metabolismo , Animais , Sequência de Bases , Sequenciamento de Cromatina por Imunoprecipitação , Sequência Conservada , Epigênese Genética , Camundongos , Família Multigênica , Elementos de Resposta , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
5.
Cell ; 134(6): 921-31, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18805086

RESUMO

Retinoic acid, a derivative of vitamin A, is an essential component of cell-cell signaling during vertebrate organogenesis. In early development, retinoic acid organizes the trunk by providing an instructive signal for posterior neuroectoderm and foregut endoderm and a permissive signal for trunk mesoderm differentiation. At later stages, retinoic acid contributes to the development of the eye and other organs. Recent studies suggest that retinoic acid may act primarily in a paracrine manner and provide insight into the cell-cell signaling networks that control differentiation of pluripotent cells.


Assuntos
Organogênese , Transdução de Sinais , Tretinoína/metabolismo , Animais , Diferenciação Celular , Humanos
6.
Development ; 146(13)2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273085

RESUMO

Retinoic acid (RA), a metabolite of retinol (vitamin A), functions as a ligand for nuclear RA receptors (RARs) that regulate development of chordate animals. RA-RARs can activate or repress transcription of key developmental genes. Genetic studies in mouse and zebrafish embryos that are deficient in RA-generating enzymes or RARs have been instrumental in identifying RA functions, revealing that RA signaling regulates development of many organs and tissues, including the body axis, spinal cord, forelimbs, heart, eye and reproductive tract. An understanding of the normal functions of RA signaling during development will guide efforts for use of RA as a therapeutic agent to improve human health. Here, we provide an overview of RA signaling and highlight its key functions during development.


Assuntos
Genes Controladores do Desenvolvimento , Receptores do Ácido Retinoico/fisiologia , Tretinoína/farmacologia , Tretinoína/fisiologia , Animais , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Controladores do Desenvolvimento/efeitos dos fármacos , Genes Controladores do Desenvolvimento/genética , Humanos , Camundongos , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Tretinoína/metabolismo , Peixe-Zebra
7.
Mol Cell ; 53(6): 1005-19, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24530304

RESUMO

Here, we generated a genome-scale shRNA library targeting long intergenic noncoding RNAs (lincRNAs) in the mouse. We performed an unbiased loss-of-function study in mouse embryonic stem cells (mESCs) and identified 20 lincRNAs involved in the maintenance of pluripotency. Among these, TUNA (Tcl1 Upstream Neuron-Associated lincRNA, or megamind) was required for pluripotency and formed a complex with three RNA-binding proteins (RBPs). The TUNA-RBP complex was detected at the promoters of Nanog, Sox2, and Fgf4, and knockdown of TUNA or the individual RBPs inhibited neural differentiation of mESCs. TUNA showed striking evolutionary conservation of both sequence- and CNS-restricted expression in vertebrates. Accordingly, knockdown of tuna in zebrafish caused impaired locomotor function, and TUNA expression in the brains of Huntington's disease patients was significantly associated with disease grade. Our results suggest that the lincRNA TUNA plays a vital role in pluripotency and neural differentiation of ESCs and is associated with neurological function of adult vertebrates.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Doença de Huntington/genética , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Diferenciação Celular , Sequência Conservada , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator 4 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Dados de Sequência Molecular , Atividade Motora , Proteína Homeobox Nanog , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Homologia de Sequência de Aminoácidos , Índice de Gravidade de Doença , Transdução de Sinais , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
9.
Alcohol Alcohol ; 55(1): 11-19, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31825074

RESUMO

AIMS: It is still unclear which enzymes contribute to the adaptive enhancement of alcohol metabolism by chronic alcohol consumption (CAC). ADH1 (Class I) has the lowest Km for ethanol and the highest sensitivity for 4-methylpyrazole (4MP) among ADH isozymes, while ADH3 (Class III) has the highest Km and the lowest sensitivity. We investigated how these two major ADHs relate to the adaptive enhancement of alcohol metabolism. METHODS: Male mice with different ADH genotypes (WT, Adh1-/- and Adh3-/-) were subjected to CAC experiment using a 10% ethanol solution for 1 month. Alcohol elimination rate (AER) was measured after ethanol injection at a 4.0 g/kg dose. 4MP-sensitive and -insensitive AERs were measured by the simultaneous administration of 4MP at a dose of 0.5 mmol/kg in order to estimate ADH1 and non-ADH1 pathways. RESULTS: AER was enhanced by CAC in all ADH genotypes, especially more than twofold in Adh1-/- mice, with increasing ADH1 and/or ADH3 liver contents, but not CYP2E1 content. 4MP-sensitive AER was also increased by CAC in WT and Adh3-/- strains, which was greater in Adh3-/- than in WT mice. The sensitive AER was increased even in Adh1-/- mice probably due to the increase in ADH3, which is semi-sensitive for 4MP. 4MP-insensitive AER was also increased in WT and Adh1-/- by CAC, but not in Adh3-/- mice. CONCLUSION: ADH1 contributes to the enhancement of alcohol metabolism by CAC, particularly in the absence of ADH3. ADH3 also contributes to the enhancement as a non-ADH1 pathway, especially in the absence of ADH1.


Assuntos
Álcool Desidrogenase/fisiologia , Eliminação Renal/fisiologia , Álcool Desidrogenase/genética , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Etanol/metabolismo , Fomepizol/farmacologia , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos , Eliminação Renal/efeitos dos fármacos
10.
Genes Dev ; 26(23): 2567-79, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23152446

RESUMO

Tight control over the segregation of endoderm, mesoderm, and ectoderm is essential for normal embryonic development of all species, yet how neighboring embryonic blastomeres can contribute to different germ layers has never been fully explained. We postulated that microRNAs, which fine-tune many biological processes, might modulate the response of embryonic blastomeres to growth factors and other signals that govern germ layer fate. A systematic screen of a whole-genome microRNA library revealed that the let-7 and miR-18 families increase mesoderm at the expense of endoderm in mouse embryonic stem cells. Both families are expressed in ectoderm and mesoderm, but not endoderm, as these tissues become distinct during mouse and frog embryogenesis. Blocking let-7 function in vivo dramatically affected cell fate, diverting presumptive mesoderm and ectoderm into endoderm. siRNA knockdown of computationally predicted targets followed by mutational analyses revealed that let-7 and miR-18 down-regulate Acvr1b and Smad2, respectively, to attenuate Nodal responsiveness and bias blastomeres to ectoderm and mesoderm fates. These findings suggest a crucial role for the let-7 and miR-18 families in germ layer specification and reveal a remarkable conservation of function from amphibians to mammals.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Camadas Germinativas/embriologia , MicroRNAs/metabolismo , Animais , Células Cultivadas , Análise Mutacional de DNA , Células-Tronco Embrionárias , Técnicas de Silenciamento de Genes , Camundongos , MicroRNAs/genética , Xenopus laevis
11.
Dev Biol ; 441(1): 127-131, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29964026

RESUMO

In mouse, retinoic acid (RA) is required for the early phase of body axis extension controlled by a population of neuromesodermal progenitors (NMPs) in the trunk called expanding-NMPs, but not for the later phase of body axis extension controlled by a population of NMPs in the tail called depleting-NMPs. Recent observations suggest that zebrafish utilize depleting-NMPs but not expanding-NMPs for body axis extension. In zebrafish, a role for RA in body axis extension was not supported by previous studies on aldh1a2 (raldh2) mutants lacking RA synthesis. Here, by treating zebrafish embryos with an RA synthesis inhibitor, we also found that body axis extension and somitogenesis was not perturbed, although loss of pectoral fin and cardiac edema were observed consistent with previous studies. The conclusion that zebrafish diverges from mouse in not requiring RA for body axis extension is consistent with zebrafish lacking early expanding-NMPs to generate the trunk. We suggest that RA control of body axis extension was added to higher vertebrates during evolution of expanding-NMPs.


Assuntos
Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Mesoderma/embriologia , Células-Tronco Neurais/metabolismo , Tretinoína/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião de Mamíferos/citologia , Embrião não Mamífero/citologia , Mesoderma/citologia , Camundongos , Células-Tronco Neurais/citologia , Especificidade da Espécie
12.
Dev Biol ; 418(1): 204-215, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27506116

RESUMO

Retinoic acid (RA) repression of Fgf8 is required for many different aspects of organogenesis, however relatively little is known about how endogenous RA controls gene repression as opposed to gene activation. Here, we show that nuclear receptor corepressors NCOR1 and NCOR2 (SMRT) redundantly mediate the ability of RA to repress Fgf8. Ncor1;Ncor2 double mutants generated by CRISPR/Cas9 gene editing exhibited a small somite and distended heart phenotype similar to that of RA-deficient Raldh2-/- embryos, associated with increased Fgf8 expression and FGF signaling in caudal progenitors and heart progenitors. Embryo chromatin immunoprecipitation studies revealed that NCOR1/2 but not coactivators are recruited to the Fgf8 RA response element (RARE) in an RA-dependent manner, whereas coactivators but not NCOR1/2 are recruited RA-dependently to a RARE near Rarb that is activated by RA. CRISPR/Cas9-mediated genomic deletion of the Fgf8 RARE in mouse embryos often resulted in a small somite defect with Fgf8 derepression caudally, but no defect was observed in heart development or heart Fgf8 expression. This suggests the existence of another DNA element whose function overlaps with the Fgf8 RARE to mediate Fgf8 repression by RA and NCOR1/2. Our studies support a model in which NCOR1/2 mediates direct RA-dependent repression of Fgf8 in caudal progenitors in order to control somitogenesis.


Assuntos
Fator 8 de Crescimento de Fibroblasto/antagonistas & inibidores , Correpressor 1 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/genética , Organogênese/genética , Somitos/anormalidades , Tretinoína/metabolismo , Aldeído Oxirredutases/genética , Animais , Sequência de Bases , Proteínas Correpressoras/genética , Desenvolvimento Embrionário , Edição de Genes/métodos , Coração/embriologia , Camundongos , Camundongos Knockout , Transdução de Sinais , Somitos/embriologia
14.
Development ; 141(15): 2972-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053430

RESUMO

Retinoic acid (RA) generated in the mesoderm of vertebrate embryos controls body axis extension by downregulating Fgf8 expression in cells exiting the caudal progenitor zone. RA activates transcription by binding to nuclear RA receptors (RARs) at RA response elements (RAREs), but it is unknown whether RA can directly repress transcription. Here, we analyzed a conserved RARE upstream of Fgf8 that binds RAR isoforms in mouse embryos. Transgenic embryos carrying Fgf8 fused to lacZ exhibited expression similar to caudal Fgf8, but deletion of the RARE resulted in ectopic trunk expression extending into somites and neuroectoderm. Epigenetic analysis using chromatin immunoprecipitation of trunk tissues from E8.25 wild-type and Raldh2(-/-) embryos lacking RA synthesis revealed RA-dependent recruitment of the repressive histone marker H3K27me3 and polycomb repressive complex 2 (PRC2) near the Fgf8 RARE. The co-regulator RERE, the loss of which results in ectopic Fgf8 expression and somite defects, was recruited near the RARb RARE by RA, but was released from the Fgf8 RARE by RA. Our findings demonstrate that RA directly represses Fgf8 through a RARE-mediated mechanism that promotes repressive chromatin, thus providing valuable insight into the mechanism of RA-FGF antagonism during progenitor cell differentiation.


Assuntos
Padronização Corporal/genética , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tretinoína/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Cromatina/metabolismo , Epigênese Genética , Histonas/metabolismo , Ligantes , Mesoderma/embriologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Isoformas de Proteínas/metabolismo , Receptores do Ácido Retinoico/metabolismo , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Somitos/embriologia , Células-Tronco/citologia
15.
Development ; 141(19): 3772-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25209250

RESUMO

Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1(-/-) embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain.


Assuntos
Padronização Corporal/fisiologia , Endoderma/fisiologia , Trato Gastrointestinal/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Glicoproteínas/metabolismo , Transdução de Sinais/fisiologia , Ativinas/metabolismo , Aldeído Oxirredutases/metabolismo , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Redes Reguladoras de Genes/genética , Vetores Genéticos/genética , Proteínas HMGB/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Luciferases , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptores do Ácido Retinoico/metabolismo , Fatores de Transcrição SOXF/metabolismo
16.
Exp Eye Res ; 154: 190-195, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840061

RESUMO

Retinoic acid (RA) is a biologically active metabolite of vitamin A (retinol) that serves as an important signaling molecule in orchestrating diverse developmental processes including multiple roles during ocular development. Loss-of-function studies using gene knockouts of RA-synthesizing enzymes encoded by Aldh1a1, Aldh1a2, and Aldh1a3 (also known as Raldh1, Raldh2, and Raldh3) have provided valuable insight into how RA controls eye morphogenesis including corneal development. However, it is unclear whether endogenous RA is required for maintenance and regeneration of adult cornea. Here, we investigated the role of Aldh1a genes in the adult cornea using a novel conditional Aldh1a1,2,3-flox/flox;Rosa26-CreERT2 loss-of-function mouse model to determine the biological function of RA. Our findings indicate that loss of RA synthesis results in corneal thinning characterized by reduced thickness of the stromal layer, impaired corneal epithelial cell proliferation, and increased apoptosis. Corneal thinning in Aldh1a-deficient mice was significantly rescued by RA administration, indicating an important role of endogenous RA signaling in adult corneal homeostasis and regeneration. Thus, Aldh1a1,2,3-flox/flox;Rosa26-CreERT2 mice provide a useful model for investigating the mechanistic role of RA signaling in adult corneal maintenance and could provide new insights into therapeutic approaches for controlling corneal repair to prevent vision loss.


Assuntos
Apoptose , Epitélio Corneano/metabolismo , Regeneração/fisiologia , Tretinoína/metabolismo , Animais , Proliferação de Células , Epitélio Corneano/patologia , Camundongos , Transdução de Sinais
17.
Dev Dyn ; 244(6): 797-807, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25809880

RESUMO

BACKGROUND: Vertebrate body axis extension occurs in a head-to-tail direction from a caudal progenitor zone that responds to interacting signals. Wnt/ß-catenin signaling is critical for generation of paraxial mesoderm, somite formation, and maintenance of the axial stem cell pool. Body axis extension requires Wnt8a in lower vertebrates, but in mammals Wnt3a is required, although the anterior trunk develops in the absence of Wnt3a. RESULTS: We examined mouse Wnt8a(-/-) and Wnt3a(-/-) single and double mutants to explore whether mammalian Wnt8a contributes to body axis extension and to determine whether a posterior growth function for Wnt8a is conserved throughout the vertebrate lineage. We find that caudal Wnt8a is expressed only during early somite stages and is required for normal development of the anterior trunk in the absence of Wnt3a. During this time, we show that Wnt8a and Wnt3a cooperate to maintain Fgf8 expression and prevent premature Sox2 up-regulation in the axial stem cell niche, critical for posterior growth. Similar to Fgf8, Wnt8a requires retinoic acid (RA) signaling to restrict its caudal expression boundary and possesses an upstream RA response element that binds RA receptors. CONCLUSIONS: These findings provide new insight into interaction of caudal Wnt-FGF-RA signals required for body axis extension.


Assuntos
Padronização Corporal/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Nicho de Células-Tronco/fisiologia , Proteína Wnt3A/fisiologia , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Oxirredutases do Álcool/deficiência , Oxirredutases do Álcool/genética , Animais , Padronização Corporal/genética , Sequência Conservada , Fator 8 de Crescimento de Fibroblasto/biossíntese , Fator 8 de Crescimento de Fibroblasto/genética , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Knockout , Fenótipo , Receptores do Ácido Retinoico/fisiologia , Elementos de Resposta/genética , Fatores de Transcrição SOXB1/biossíntese , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/fisiologia , Somitos/crescimento & desenvolvimento , Somitos/metabolismo , Tretinoína/farmacologia , Vertebrados/embriologia , Proteínas Wnt , Proteína Wnt3A/deficiência , Proteína Wnt3A/genética
18.
Semin Cell Dev Biol ; 24(10-12): 694-700, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973941

RESUMO

The vitamin A metabolite retinoic acid (RA) serves as a ligand for nuclear RA receptors that control differentiation of progenitor cells important for vertebrate development. Genetic studies in mouse embryos deficient for RA-generating enzymes have been invaluable for deciphering RA function. RA first begins to act during early organogenesis when RA generated in trunk mesoderm begins to function as a diffusible signal controlling progenitor cell differentiation. In neuroectoderm, RA functions as an instructive signal to stimulate neuronal differentiation of progenitor cells in the hindbrain and spinal cord. RA is not required for early neuronal differentiation of the forebrain, but at later stages RA stimulates neuronal differentiation in forebrain basal ganglia. RA also acts as a permissive signal for differentiation by repressing fibroblast growth factor (FGF) signaling in differentiated cells as they emerge from progenitor populations in the caudal progenitor zone and second heart field. In addition, RA signaling stimulates differentiation of spermatogonial germ cells and induces meiosis in male but not female gonads. A more complete understanding of the normal functions of RA signaling during development will guide efforts to use RA as a differentiation agent for therapeutic purposes.


Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Retinoides/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Células Germinativas/citologia , Camundongos
19.
Hepatology ; 60(3): 1044-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24668648

RESUMO

UNLABELLED: The important roles of retinols and their metabolites have recently been emphasized in the interactions between hepatic stellate cells (HSCs) and natural killer (NK) cells. Nevertheless, the expression and role of retinol metabolizing enzyme in both cell types have yet to be clarified. Thus, we investigated the expression of retinol metabolizing enzyme and its role in liver fibrosis. Among several retinol metabolizing enzymes, only alcohol dehydrogenase (ADH) 3 expression was detected in isolated HSCs and NK cells, whereas hepatocytes express all of them. In vitro treatment with 4-methylpyrazole (4-MP), a broad ADH inhibitor, or depletion of the ADH3 gene down-regulated collagen and transforming growth factor-ß1 (TGF-ß1) gene expression, but did not affect α-smooth muscle actin gene expression in cultured HSCs. Additionally, in vitro, treatments with retinol suppressed NK cell activities, whereas inhibition of ADH3 enhanced interferon-γ (IFN-γ) production and cytotoxicity of NK cells against HSCs. In vivo, genetic depletion of the ADH3 gene ameliorated bile duct ligation- and carbon tetrachloride-induced liver fibrosis, in which a higher number of apoptotic HSCs and an enhanced activation of NK cells were detected. Freshly isolated HSCs from ADH3-deficient mice showed reduced expression of collagen and TGF-ß1, but enhanced expression of IFN-γ was detected in NK cells from these mice compared with those of control mice. Using reciprocal bone marrow transplantation of wild-type and ADH3-deficient mice, we demonstrated that ADH3 deficiency in both HSCs and NK cells contributed to the suppressed liver fibrosis. CONCLUSION: ADH3 plays important roles in promoting liver fibrosis by enhancing HSC activation and inhibiting NK cell activity, and could be used as a potential therapeutic target for the treatment of liver fibrosis.


Assuntos
Aldeído Oxirredutases/metabolismo , Células Estreladas do Fígado/fisiologia , Células Matadoras Naturais/fisiologia , Cirrose Hepática/enzimologia , Animais , Transplante de Medula Óssea , Interferon gama/metabolismo , Cirrose Hepática/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Dev Biol ; 381(1): 28-37, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23806210

RESUMO

The enteric nervous system (ENS) forms from the neural crest-derived precursors that colonize the bowel before differentiating into a network of neurons and glia that control intestinal function. Retinoids are essential for normal ENS development, but the role of retinoic acid (RA) metabolism in development remains incompletely understood. Because RA is produced locally in the tissues where it acts by stimulating RAR and RXR receptors, RA signaling during development is absolutely dependent on the rate of RA synthesis and degradation. RA is produced by three different enzymes called retinaldehyde dehydrogenases (RALDH1, RALDH2 and RALDH3) that are all expressed in the developing bowel. To determine the relative importance of these enzymes for ENS development, we analyzed whole mount preparations of adult (8-12-week old) myenteric and submucosal plexus stained with NADPH diaphorase (neurons and neurites), anti-TuJ1 (neurons and neurites), anti-HuC/HuD (neurons), and anti-S100ß (glia) in an allelic series of mice with mutations in Raldh1, Raldh2, and Raldh3. We found that Raldh1-/-, Raldh2+/-, Raldh3+/- (R1(KO)R2(Het)R3(Het)) mutant mice had a reduced colon myenteric neuron density, reduced colon myenteric neuron to glia ratio, reduced colon submucosal neuron density, and increased colon myenteric fibers per neuron when compared to the wild type (WT; Raldh1WT, Raldh2WT, Raldh3WT) mice. These defects are unlikely to be due to defective ENS precursor migration since R1(KO)R2(Het)R3(KO) mice had increased enteric neuron progenitor migration into the distal colon compared to WT during development. RALDH mutant mice also have reduced contractility in the colon compared to WT mice. These data suggest that RALDH1, RALDH2 and RALDH3 each contribute to ENS development and function.


Assuntos
Aldeído Oxirredutases/fisiologia , Colo/inervação , Sistema Nervoso Entérico/metabolismo , Isoenzimas/fisiologia , Retinal Desidrogenase/fisiologia , Família Aldeído Desidrogenase 1 , Animais , Movimento Celular , Colo/enzimologia , Suplementos Nutricionais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neuroglia/citologia , Neurônios/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA