Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomed Mater ; 10(5): 055002, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26334374

RESUMO

Surface improvement of implants is essential for achieving a fast osseo-integration. Technically, the creation of a precise pattern on a titanium alloy surface is challenging. Here, the femtosecond laser was chosen as an innovative technology for texturing with accuracy a nano-micro topography. By adjusting the laser parameters, three biomimetic textures were fabricated on the titanium surface: micropits with nano-ripples in the pits, micropits with nano-ripples around the pits, and a texture with only nano-ripples. Mesenchymal stem cells (MSCs, C3H10T1/2) grown on these surfaces displayed altered morphometric parameters, and modified their focal adhesions in term of number, size, and distribution depending on surface type. These results indicate that the MSCs perceived subtle differences in topography. Dynamic analyses of early cellular events showed a higher speed of spreading on all the textured surfaces as opposed to the polished titanium. Concerning commitment, all the laser-treated surfaces strongly inhibited the expression of adipogenic-related genes (PPARϒ2, C/EBPα) and up-regulated the expression of osteoblastic-related genes (RUNX2, osteocalcin). Interestingly, the combination of micropits to nano-ripples enhanced their osteogenic potential as seen by a twofold increase in osteocalcin mRNA. Alkaline phosphatase activity was increased on all the textured surfaces, and lipid production was down-regulated. The functionalization of metallic surfaces by this high-resolution process will help us understand the MSCs' interactions with substrates for the development of textured implants with predictable tissue integrative properties.


Assuntos
Adipogenia/fisiologia , Adesão Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Titânio/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Linhagem Celular , Movimento Celular/fisiologia , Lasers , Teste de Materiais , Camundongos , Propriedades de Superfície , Titânio/efeitos da radiação
2.
J Biomed Mater Res A ; 100(11): 3108-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22791663

RESUMO

The femtosecond laser processing enabled the structuring of six types of surfaces on titanium-6aluminium-4vanadium (Ti-6Al-4V) plates. The obtained hierarchical features consisted of a combination of microgrooves and oriented nanostructures. By adjusting beam properties such as laser polarization, the width of the microgrooves (20 or 60 µm) and the orientation of the nanostructures (parallel or perpendicular to the microgrooves) can be precisely controlled. Mesenchymal stem cells (MSCs) grown on these structured surfaces produced cytoplasmic extensions with focal contacts, while on the smooth titanium, the cells were found to be well spread and without any focal contact 12 h postseeding. The 600-nm wide nanostructures on their own were sufficient to orient the MSCs. For the multiscale structured areas, when the orientation of the nanostructures was orthogonal in relation to the microgrooves, there was an important decrease in or even a loss of cell alignment signifying that cells were sensitive to the directional nanostructures in the microgrooves. At 7 days, cell proliferation was not affected but the direction of nanostructures controlled the matrix organization. The ultrafast laser, as a new method for producing micro-nanohybrid surfaces, is a promising approach to promote desired tissue organization for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Titânio/química , Ligas/química , Animais , Adesão Celular , Linhagem Celular , Proliferação de Células , Fibronectinas/metabolismo , Fibronectinas/ultraestrutura , Lasers , Células-Tronco Mesenquimais/metabolismo , Camundongos , Propriedades de Superfície
3.
Artigo em Inglês | MEDLINE | ID: mdl-18003475

RESUMO

This paper introduces the new concept of an electronic cane for blind people. While some systems inform the subject only of the presence of the object and its relative distance, RecognizeCane is also able to recognize most common objects and environment clues to increase the safety and confidence of the navigation process. The originality of RecognizeCane is the use of simple sensors, such as infrared, brilliance or water sensors to inform the subject of the presence, for example, of a stairway, a water puddle, a zebra crossing or a trash can. This cane does not use an embedded vision system. RecognizeCane is equipped with several sensors and microprocessors to collect sensor data and extract the desired information about the close environment by means of a dynamic analysis of output signals.


Assuntos
Cegueira , Bengala , Meio Ambiente , Humanos , Reconhecimento Psicológico , Segurança , Auxiliares Sensoriais , Pessoas com Deficiência Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA