RESUMO
Peripheral inflammation initiates changes in spinal nociceptive processing leading to hyperalgesia. Previously, we demonstrated that among 102 lipid species detected by LC-MS/MS analysis in rat spinal cord, the most notable increases that occur after intraplantar carrageenan are metabolites of 12-lipoxygenases (12-LOX), particularly hepoxilins (HXA(3) and HXB(3)). Thus, we examined involvement of spinal LOX enzymes in inflammatory hyperalgesia. In the current work, we found that intrathecal (IT) delivery of the LOX inhibitor nordihydroguaiaretic acid prevented the carrageenan-evoked increase in spinal HXB(3) at doses that attenuated the associated hyperalgesia. Furthermore, IT delivery of inhibitors targeting 12-LOX (CDC, Baicalein), but not 5-LOX (Zileuton) dose-dependently attenuated tactile allodynia. Similarly, IT delivery of 12-LOX metabolites of arachidonic acid 12(S)-HpETE, 12(S)-HETE, HXA(3), or HXB(3) evoked profound, persistent tactile allodynia, but 12(S)-HpETE and HXA(3) produced relatively modest, transient heat hyperalgesia. The pronociceptive effect of HXA(3) correlated with enhanced release of Substance P from primary sensory afferents. Importantly, HXA(3) triggered sustained mobilization of calcium in cells stably overexpressing TRPV1 or TRPA1 receptors and in acutely dissociated rodent sensory neurons. Constitutive deletion or antagonists of TRPV1 (AMG9810) or TRPA1 (HC030031) attenuated this action. Furthermore, pretreatment with antihyperalgesic doses of AMG9810 or HC030031 reduced spinal HXA(3)-evoked allodynia. These data indicate that spinal HXA(3) is increased by peripheral inflammation and promotes initiation of facilitated nociceptive processing through direct activation of TRPV1 and TRPA1 at central terminals.
Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Araquidonato 12-Lipoxigenase/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/fisiopatologia , Medula Espinal/metabolismo , Canais de Cátion TRPV/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Camundongos , Medula Espinal/enzimologia , Canal de Cátion TRPA1RESUMO
In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2(flox/flox) mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2(flox/flox);K14Cre(+) mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2(flox/flox);K14Cre(+) papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2(flox/flox); LysMCre(+) myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer.
Assuntos
Ciclo-Oxigenase 2/metabolismo , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Ciclo-Oxigenase 2/genética , Dano ao DNA/efeitos da radiação , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/patologia , Epiderme/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Deleção de Genes , Expressão Gênica , Marcação de Genes , Homozigoto , Humanos , Hiperplasia/genética , Camundongos , Camundongos Transgênicos , Células Mieloides/metabolismo , Células Mieloides/patologia , Células Mieloides/efeitos da radiação , Neovascularização Patológica/genética , Especificidade de Órgãos/genética , Neoplasias Cutâneas/patologiaRESUMO
Previously, we observed significant increases in spinal 12-lipoxygenase (LOX) metabolites, in particular, hepoxilins, which contribute to peripheral inflammation-induced tactile allodynia. However, the enzymatic sources of hepoxilin synthase (HXS) activity in rats remain elusive. Therefore, we overexpressed each of the 6 rat 12/15-LOX enzymes in HEK-293T cells and measured by LC-MS/MS the formation of HXB3, 12-HETE, 8-HETE, and 15-HETE from arachidonic acid (AA) at baseline and in the presence of LOX inhibitors (NDGA, AA-861, CDC, baicalein, and PD146176) vs. vehicle-treated and mock-transfected controls. We detected the following primary intrinsic activities: 12-LOX (Alox12, Alox15), 15-LOX (Alox15b), and HXS (Alox12, Alox15). Similar to human and mouse orthologs, proteins encoded by rat Alox12b and Alox12e possessed minimal 12-LOX activity with AA as substrate, while eLOX3 (encoded by Aloxe3) exhibited HXS without 12-LOX activity when coexpressed with Alox12b or supplemented with 12-HpETE. CDC potently inhibited HXS and 12-LOX activity in vitro (relative IC50s: CDC, ~0.5 and 0.8 µM, respectively) and carrageenan-evoked tactile allodynia in vivo. Notably, peripheral inflammation significantly increased spinal eLOX3; intrathecal pretreatment with either siRNA targeting Aloxe3 or an eLOX3-selective antibody attenuated the associated allodynia. These findings implicate spinal eLOX3-mediated hepoxilin synthesis in inflammatory hyperesthesia and underscore the importance of developing more selective 12-LOX/HXS inhibitors.
Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Hiperalgesia/etiologia , Oxirredutases Intramoleculares/metabolismo , Animais , Araquidonato 12-Lipoxigenase/efeitos dos fármacos , Araquidonato 15-Lipoxigenase/efeitos dos fármacos , Células HEK293 , Humanos , Inibidores de Lipoxigenase/farmacologia , Masculino , RatosRESUMO
Drug efflux transporters are a major determinant of drug efficacy and toxicity. A canonical example is P-glycoprotein (P-gp), an efflux transporter that controls the intestinal absorption of diverse compounds. Despite a rich literature on the dietary and pharmaceutical compounds that impact P-gp activity, its sensitivity to gut microbial metabolites remains an open question. Surprisingly, we found that the cardiac drug-metabolizing gut Actinobacterium Eggerthella lenta increases drug absorption in mice. Experiments in cell culture revealed that E. lenta produces a soluble factor that post-translationally inhibits P-gp ATPase efflux activity. P-gp inhibition is conserved in the Eggerthellaceae family but absent in other Actinobacteria. Comparative genomics identified genes associated with P-gp inhibition. Finally, activity-guided biochemical fractionation coupled to metabolomics implicated a group of small polar metabolites with P-gp inhibitory activity. These results highlight the importance of considering the broader relevance of the gut microbiome for drug disposition beyond first-pass metabolism.
RESUMO
Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Herein, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal study of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. 16S rRNA gene sequencing revealed significant shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities. Metagenomic sequencing revealed marked shifts in pyrimidine-related gene abundance during oral fluoropyrimidine treatment, including enrichment of the preTA operon, which is sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). preTA + bacteria depleted 5-FU in gut microbiota grown ex vivo and the mouse distal gut. Germ-free and antibiotic-treated mice experienced increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA + E. coli, or preTA-high CRC patient stool. Finally, preTA abundance was negatively associated with fluoropyrimidine toxicity in patients. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach is generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.
RESUMO
Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (ß-hydroxybutyrate, ßHB) rescued EAE whereas transgenic mice unable to produce ßHB in the intestine developed more severe disease. Transplantation of the ßHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 (Th17) cell activation in vitro . Finally, we isolated a L. murinus strain that protected from EAE, which was phenocopied by the Lactobacillus metabolite indole lactic acid. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.
RESUMO
Fatty acid-derived eicosanoids and N-acylethanolamines (NAE) are important bioactive lipid mediators involved in numerous biological processes including cell signaling and disease progression. To facilitate research on these lipid mediators, we have developed a targeted high-throughput mass spectrometric based methodology to monitor and quantitate both eicosanoids and NAEs, and can be analyzed separately or together in series. Each methodology utilizes scheduled multiple reaction monitoring (sMRM) pairs in conjunction with a 25 min reverse-phase HPLC separation. The eicosanoid methodology monitors 141 unique metabolites and quantitative amounts can be determined for over 100 of these metabolites against standards. The analysis covers eicosanoids generated from cycloxygenase, lipoxygenase, cytochrome P450 enzymes, and those generated from non-enzymatic pathways. The NAE analysis monitors 36 metabolites and quantitative amounts can be determined for 33 of these metabolites against standards. The NAE method contains metabolites derived from saturated fatty acids, unsaturated fatty acids, and eicosanoids. The lower limit of detection for eicosanoids ranges from 0.1pg to 1pg, while NAEs ranges from 0.1pg to 1000pg. The rationale and design of the methodology is discussed.
Assuntos
Eicosanoides/análise , Etanolaminas/análise , Ensaios de Triagem em Larga Escala/métodos , Metabolismo dos Lipídeos , Animais , Dinoprostona/química , Eicosanoides/líquido cefalorraquidiano , Eicosanoides/química , Etanolaminas/líquido cefalorraquidiano , Etanolaminas/química , Ratos , Padrões de Referência , Soluções , Fatores de TempoRESUMO
Dietary ingestion of (n-3) PUFA alters the production of eicosanoids and can suppress chronic inflammatory and autoimmune diseases. The extent of changes in eicosanoid production during an infection of mice fed a diet high in (n-3) PUFA, however, has not, to our knowledge, been reported. We fed mice a diet containing either 18% by weight soybean oil (SO) or a mixture with fish oil (FO), FO:SO (4:1 ratio), for 2 wk and then infected them with Borrelia burgdorferi. We used an MS-based lipidomics approach and quantified changes in eicosanoid production during Lyme arthritis development over 21 d. B. burgdorferi infection induced a robust production of prostanoids, mono-hydroxylated metabolites, and epoxide-containing metabolites, with 103 eicosanoids detected of the 139 monitored. In addition to temporal and compositional changes in the eicosanoid profile, dietary FO substitution increased the accumulation of 15-deoxy PGJ(2), an antiinflammatory metabolite derived from arachidonic acid. Chiral analysis of the mono-hydroxylated metabolites revealed they were generated from primarily nonenzymatic mechanisms. Although dietary FO substitution reduced the production of inflammatory (n-6) fatty acid-derived eicosanoids, no change in the host inflammatory response or development of disease was detected.
Assuntos
Gorduras Insaturadas na Dieta/farmacologia , Eicosanoides/metabolismo , Óleos de Peixe/farmacologia , Articulações/metabolismo , Doença de Lyme/dietoterapia , Doença de Lyme/metabolismo , Ração Animal , Animais , Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Graxos/sangue , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Óleos de Peixe/administração & dosagem , Membro Posterior , Temperatura Alta , Articulações/patologia , Fígado/química , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C3HRESUMO
Lipid molecules play an important role in regulating the sensitivity of sensory neurons and enhancing pain perception, and growing evidence indicates that the effect occurs both at the site of injury and in the spinal cord. Using high-throughput mass spectrometry methodology, we sought to determine the contribution of spinal bioactive lipid species to inflammation-induced hyperalgesia in rats. Quantitative analysis of CSF and spinal cord tissue for eicosanoids, ethanolamides and fatty acids revealed the presence of 102 distinct lipid species. After induction of peripheral inflammation by intra-plantar injection of carrageenan to the ipsilateral hind paw, lipid changes in cyclooxygenase (COX) and 12-lipoxygenase (12-LOX) signaling pathways peaked at 4 h in the CSF. In contrast, changes occurred in a temporally disparate manner in the spinal cord with LOX-derived hepoxilins followed by COX-derived prostaglandin E(2), and subsequently the ethanolamine anandamide. Systemic treatment with the mu opioid agonist morphine, the COX inhibitor ketorolac, or the LOX inhibitor nordihydroguaiaretic acid significantly reduced tactile allodynia, while their effects on the lipid metabolites were different. Morphine did not alter the lipid profile in the presence or absence of carrageenan inflammation. Ketorolac caused a global reduction in eicosanoid metabolism in naïve animals that remained suppressed following injection of carrageenan. Nordihydroguaiaretic acid-treated animals also displayed reduced basal levels of COX and 12-LOX metabolites, but only 12-LOX metabolites remained decreased after carrageenan treatment. These findings suggest that both COX and 12-LOX play an important role in the induction of carrageenan-mediated hyperalgesia through these pathways.
Assuntos
Hiperalgesia/metabolismo , Hiperalgesia/patologia , Mediadores da Inflamação/fisiologia , Lipídeos/biossíntese , Medula Espinal/metabolismo , Medula Espinal/patologia , Animais , Araquidonato 12-Lipoxigenase/líquido cefalorraquidiano , Araquidonato 12-Lipoxigenase/fisiologia , Moduladores de Receptores de Canabinoides/líquido cefalorraquidiano , Moduladores de Receptores de Canabinoides/fisiologia , Eicosanoides/líquido cefalorraquidiano , Eicosanoides/fisiologia , Etanolaminas/líquido cefalorraquidiano , Etanolaminas/farmacologia , Ácidos Graxos/líquido cefalorraquidiano , Ácidos Graxos/fisiologia , Hiperalgesia/líquido cefalorraquidiano , Mediadores da Inflamação/farmacologia , Lipídeos/líquido cefalorraquidiano , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
Alanine-serine-cysteine transporter 2 (ASCT2, SLC1A5) is the primary transporter of glutamine in cancer cells and regulates the mTORC1 signaling pathway. The SLC1A5 function involves finely tuned orchestration of two domain movements that include the substrate-binding transport domain and the scaffold domain. Here, we present cryo-EM structures of human SLC1A5 and its complex with the substrate, L-glutamine in an outward-facing conformation. These structures reveal insights into the conformation of the critical ECL2a loop which connects the two domains, thus allowing rigid body movement of the transport domain throughout the transport cycle. Furthermore, the structures provide new insights into substrate recognition, which involves conformational changes in the HP2 loop. A putative cholesterol binding site was observed near the domain interface in the outward-facing state. Comparison with the previously determined inward-facing structure of SCL1A5 provides a basis for a more integrated understanding of substrate recognition and transport mechanism in the SLC1 family.
Assuntos
Sistema ASC de Transporte de Aminoácidos/química , Sistema ASC de Transporte de Aminoácidos/metabolismo , Glutamina/química , Glutamina/metabolismo , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Microscopia Crioeletrônica , Humanos , Ligação Proteica , Conformação ProteicaRESUMO
The Lipid Metabolites and Pathway Strategy (LIPID MAPS) Consortium is a nationwide initiative that has taken on the task of employing lipidomics to advance our understanding of lipid metabolism at the molecular and mechanistic level in living organisms. An important step toward this goal is to craft enabling analytical procedures to comprehensively measure all lipid species, to establish the precise structural identity of the lipid molecules analyzed, and to generate accurate quantitative information. The LIPID MAPS Consortium has succeeded in the implementation of a complete infrastructure that now provides tools for analysis of the global lipidome in cultured and primary cells. Here we illustrate the advancement of a gas chromatography mass spectrometry (GC/MS) procedure for the analysis of essential fatty acids in RAW 264.7 cells. Our method allows for the specific identification and quantification of over 30 fatty acids present in cells in their free form in a single analytical GC/MS run. Free fatty acids are selectively extracted in the presence of deuterated internal standards, which permit subsequent estimation of extraction efficiencies and quantification with high accuracy. Mass spectrometer conditions were optimized for single-ion monitoring, which provides an extremely sensitive technology to measure fatty acids from biological samples in trace amounts. These methods will be presented in the context of our broader effort to analyze all fatty acids as well as their metabolites in inflammatory cells.
Assuntos
Ácidos Graxos Essenciais/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Macrófagos/química , Animais , Linhagem Celular Tumoral , Camundongos , Reprodutibilidade dos TestesRESUMO
Although nonsteroidal anti-inflammatory drugs are the first line of therapeutics for the treatment of mild to moderate somatic pain, they are not generally considered to be effective for neuropathic pain. In the current study, direct activation of spinal Toll-like 4 receptors (TLR4) by the intrathecal (IT) administration of KDO2 lipid A (KLA), the active component of lipopolysaccharide, elicits a robust tactile allodynia that is unresponsive to cyclooxygenase inhibition, despite elevated expression of cyclooxygenase metabolites in the spinal cord. Intrathecal KLA increases 12-lipoxygenase-mediated hepoxilin production in the lumbar spinal cord, concurrent with expression of the tactile allodynia. The TLR4-induced hepoxilin production was also observed in primary spinal microglia, but not in astrocytes, and was accompanied by increased microglial expression of the 12/15-lipoxygenase enzyme 15-LOX-1. Intrathecal KLA-induced tactile allodynia was completely prevented by spinal pretreatment with the 12/15-lipoxygenase inhibitor CDC or a selective antibody targeting rat 15-LOX-1. Similarly, pretreatment with the selective inhibitors ML127 or ML351 both reduced activity of the rat homolog of 15-LOX-1 heterologously expressed in HEK-293T cells and completely abrogated nonsteroidal anti-inflammatory drug-unresponsive allodynia in vivo after IT KLA. Finally, spinal 12/15-lipoxygenase inhibition by nordihydroguaiaretic acid (NDGA) both prevents phase II formalin flinching and reverses formalin-induced persistent tactile allodynia. Taken together, these findings suggest that spinal TLR4-mediated hyperpathic states are mediated at least in part through activation of microglial 15-LOX-1.
Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Lipoxigenases/uso terapêutico , Neuroglia/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Cromatografia Líquida , Inibidores Enzimáticos/uso terapêutico , Lipopolissacarídeos/toxicidade , Masculino , Espectrometria de Massas , Estimulação Física/efeitos adversos , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Receptor 4 Toll-Like/antagonistas & inibidores , TransfecçãoRESUMO
Cyclic GMP-AMP synthase (cGAS) is activated by ds-DNA binding to produce the secondary messenger 2',3'-cGAMP. cGAS is an important control point in the innate immune response; dysregulation of the cGAS pathway is linked to autoimmune diseases while targeted stimulation may be of benefit in immunoncology. We report here the structure of cGAS with dinucleotides and small molecule inhibitors, and kinetic studies of the cGAS mechanism. Our structural work supports the understanding of how ds-DNA activates cGAS, suggesting a site for small molecule binders that may cause cGAS activation at physiological ATP concentrations, and an apparent hotspot for inhibitor binding. Mechanistic studies of cGAS provide the first kinetic constants for 2',3'-cGAMP formation, and interestingly, describe a catalytic mechanism where 2',3'-cGAMP may be a minor product of cGAS compared with linear nucleotides.
Assuntos
Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Asparagina/química , Sítios de Ligação , DNA/química , DNA/metabolismo , Humanos , Imunidade Inata , Cinética , Modelos Moleculares , Nucleotidiltransferases/genética , Conformação Proteica em alfa-HéliceRESUMO
Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.
Assuntos
Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Anticorpos/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Ensaio de Imunoadsorção Enzimática , Polarização de Fluorescência , Humanos , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Nucleotídeos Cíclicos/imunologia , Nucleotidiltransferases/metabolismo , Ligação Proteica , Pirazóis/síntese química , Pirimidinas/síntese químicaRESUMO
In the rapidly growing field of metabolomics, it is common to analyze complex biological samples by chromatography coupled to mass spectrometry. While several techniques are available for the detection of significant peaks in individual samples, it is still difficult to determine small differences between similar samples. Using conventional software, visual inspections of individual chromatograms or individual mass spectra are often of little use because the differences in the composition of small molecules are too small to be recognizable. Thus, we developed a new approach to visualizing mass spectral datasets using a tool that allows one to easily detect these small differences between mass spectra and chromatograms derived from matched samples. Using these tools on extracts from wild-type and methyltransferase knockout strains of the yeast Saccharomyces cerevisiae, we were able to readily identify those mass spectra in our data sets that were different between the wild-type and the knockout extracts and to identify the molecules involved. The software was also successfully applied to a set of LC/MS data from peptide digests that were performed with identical substrates but different enzymes. We have named this visualization tool COMSPARI (COMparision of SPectrAl Retention Information) and are making the software publicly available via Internet at.
Assuntos
Extratos Celulares/química , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Saccharomyces cerevisiae/genética , SoftwareRESUMO
UNLABELLED: Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA-induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell type-specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared with littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2-expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell type-specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biologic responses. IMPLICATIONS: Cox-2 gene deletion demonstrates that intrinsic COX-2 expression in initiated keratinocytes is a principal driver of skin carcinogenesis; lipidomic analysis identifies likely prostanoid effectors.
Assuntos
Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/enzimologia , Deleção de Genes , Marcação de Genes , Metabolismo dos Lipídeos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/enzimologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Diferenciação Celular , Proliferação de Células , Eicosanoides/metabolismo , Epiderme/patologia , Células Epiteliais/patologia , Hiperplasia , Queratinócitos/enzimologia , Queratinócitos/patologia , Macrófagos/patologia , Camundongos , Células Mieloides/enzimologia , Papiloma/patologia , Pele/irrigação sanguínea , Pele/patologia , Neoplasias Cutâneas/patologia , Acetato de TetradecanoilforbolRESUMO
Cardiolipin, a major component of mitochondria, is critical for mitochondrial functioning including the regulation of cytochrome c release during apoptosis and proper electron transport. Mitochondrial cardiolipin with its unique bulky amphipathic structure is a potential substrate for phospholipase A2 (PLA2) in vivo. We have developed mass spectrometric methodology for analyzing PLA2 activity toward various cardiolipin forms and demonstrate that cardiolipin is a substrate for sPLA2, cPLA2 and iPLA2, but not for Lp-PLA2. Our results also show that none of these PLA2s have significant PLA1 activities toward dilyso-cardiolipin. To understand the mechanism of cardiolipin hydrolysis by PLA2, we also quantified the release of monolyso-cardiolipin and dilyso-cardiolipin in the PLA2 assays. The sPLA2s caused an accumulation of dilyso-cardiolipin, in contrast to iPLA2 which caused an accumulation of monolyso-cardiolipin. Moreover, cardiolipin inhibits iPLA2 and cPLA2, and activates sPLA2 at low mol fractions in mixed micelles of Triton X-100 with the substrate 1-palmitoyl-2-arachidonyl-sn-phosphtidylcholine. Thus, cardiolipin functions as both a substrate and a regulator of PLA2 activity and the ability to assay the various forms of PLA2 is important in understanding its function.
Assuntos
Cardiolipinas/metabolismo , Espectrometria de Massas/métodos , Fosfolipases A2/metabolismo , Animais , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Fosfolipases A2 Independentes de Cálcio/metabolismo , Fosfolipases A2 Secretórias/metabolismoRESUMO
Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography - tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis.
Assuntos
Colesterol/análogos & derivados , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Placa Aterosclerótica/genética , Proteínas Tirosina Quinases/genética , Receptor 4 Toll-Like/genética , Animais , Transporte Biológico , Linhagem Celular , Colesterol/química , Colesterol/isolamento & purificação , Colesterol/farmacologia , LDL-Colesterol/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipoproteínas LDL/química , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxirredução , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Cultura Primária de Células , Multimerização Proteica , Proteínas Tirosina Quinases/deficiência , Transdução de Sinais , Quinase Syk , Receptor 4 Toll-Like/deficiênciaRESUMO
Persistent pain after resolution of clinically appreciable signs of arthritis poses a therapeutic challenge, and immunosuppressive therapies do not meet this medical need. To investigate this conversion to persistent pain, we utilized the K/BxN serum transfer arthritis model, which has persistent mechanical hypersensitivity despite the resolution of visible inflammation. Toll-like receptor (TLR) 4 has been implicated as a potential therapeutic target in neuropathic and other pain models. We compared the relative courses of serum transfer arthritis and mechanical hypersensitivity in wild type (WT) and Tlr4(-/-) mice. K/BxN serum transfer induced similar joint swelling and inflammation from days 4-22 in WT and Tlr4(-/-) mice. Unlike WT mice, Tlr4(-/-) mice displayed a significant reversal in mechanical hypersensitivity and diminished appearance of glial activation markers after resolution of peripheral inflammation. Intrathecal (IT) delivery of a TLR4 antagonist, lipopolysaccharide Rhodobacter sphaeroides (LPS-RS; 10 µg), on days 6, 9, and 12 abrogated the transition to persistent mechanical hypersensitivity in WT arthritic mice, while later administration had no impact. We utilized a lipidomics liquid chromatography tandem mass spectrometry methodology to determine spinal cord profiles of bioactive lipid species after early LPS-RS treatment compared to vehicle-treated control animals. WT arthritic mice had reduced spinal levels of the anti-inflammatory prostaglandin 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) on day 6, compared to IT LPS-RS-treated mice. Direct IT application of 15d-PGJ(2) (0.5 µg) on day 6 improved mechanical hypersensitivity in arthritic mice within 15 min. Hence, TLR4 signaling altered spinal bioactive lipid profiles in the serum transfer model and played a critical role in the transition from acute to chronic postinflammatory mechanical hypersensitivity.
Assuntos
Artrite Experimental/patologia , Dor Crônica/patologia , Hiperalgesia/patologia , Mediadores da Inflamação/fisiologia , Medula Espinal/imunologia , Receptor 4 Toll-Like/fisiologia , Animais , Artrite Experimental/sangue , Artrite Experimental/imunologia , Dor Crônica/sangue , Dor Crônica/imunologia , Modelos Animais de Doenças , Hiperalgesia/sangue , Hiperalgesia/imunologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/deficiênciaRESUMO
Eicosanoid metabolism differs in profile and quantity between macrophages of different tissue origin and method of elicitation, as well as between primary and immortalized macrophages after activation with inflammatory stimuli. Using a lipidomic approach, we comprehensively analyzed the eicosanoids made by murine RPMs, TGEMs, BMDM, and the macrophage-like cell line RAW after stimulation with the TLR-4-specific agonist KLA. Direct correlation among total COX metabolites, COX side-products (11-HETE, 15-HETE), COX-2 mRNA, and protein at 8 h was found when comparing each cell type. Comprehensive qPCR analysis was used to compare relative transcript levels between the terminal prostanoid synthases themselves as well as between each cell type. Levels of PGE(2), PGD(2), and TxB(2) generally correlated with enzyme transcript expression of PGES, PGDS, and TBXS, providing evidence of comparable enzyme activities. PGIS transcript was expressed only in RPM and TGEM macrophages and at an exceptionally low level, despite high metabolite production compared with other synthases. Presence of PGIS in RPM and TGEM also lowered the production of PGE(2) versus PGD(2) by approximately tenfold relative to BMDM and RAW cells, which lacked this enzyme. Our results demonstrate that delayed PG production depends on the maximal level of COX-2 expression in different macrophages after TLR-4 stimulation. Also, the same enzymes in each cell largely dictate the profile of eicosanoids produced depending on the ratios of expression between them, with the exception of PGIS, which appears to have much greater synthetic capacity and competes selectively with mPGES-1.