Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7997): 98-104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297176

RESUMO

The sulfur reduction reaction (SRR) plays a central role in high-capacity lithium sulfur (Li-S) batteries. The SRR involves an intricate, 16-electron conversion process featuring multiple lithium polysulfide intermediates and reaction branches1-3. Establishing the complex reaction network is essential for rational tailoring of the SRR for improved Li-S batteries, but represents a daunting challenge4-6. Herein we systematically investigate the electrocatalytic SRR to decipher its network using the nitrogen, sulfur, dual-doped holey graphene framework as a model electrode to understand the role of electrocatalysts in acceleration of conversion kinetics. Combining cyclic voltammetry, in situ Raman spectroscopy and density functional theory calculations, we identify and directly profile the key intermediates (S8, Li2S8, Li2S6, Li2S4 and Li2S) at varying potentials and elucidate their conversion pathways. Li2S4 and Li2S6 were predominantly observed, in which Li2S4 represents the key electrochemical intermediate dictating the overall SRR kinetics. Li2S6, generated (consumed) through a comproportionation (disproportionation) reaction, does not directly participate in electrochemical reactions but significantly contributes to the polysulfide shuttling process. We found that the nitrogen, sulfur dual-doped holey graphene framework catalyst could help accelerate polysulfide conversion kinetics, leading to faster depletion of soluble lithium polysulfides at higher potential and hence mitigating the polysulfide shuttling effect and boosting output potential. These results highlight the electrocatalytic approach as a promising strategy for tackling the fundamental challenges regarding Li-S batteries.

2.
Nat Mater ; 23(5): 670-679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413809

RESUMO

Fast charging is a critical concern for the next generation of electrochemical energy storage devices, driving extensive research on new electrode materials for electrochemical capacitors and micro-supercapacitors. Here we introduce a significant advance in producing thick ruthenium nitride pseudocapacitive films fabricated using a sputter deposition method. These films deliver over 0.8 F cm-2 (~500 F cm-3) with a time constant below 6 s. By utilizing an original electrochemical oxidation process, the volumetric capacitance doubles (1,200 F cm-3) without sacrificing cycling stability. This enables an extended operating potential window up to 0.85 V versus Hg/HgO, resulting in a boost to 3.2 F cm-2 (3,200 F cm-3). Operando X-ray absorption spectroscopy and transmission electron microscopy analyses reveal novel insights into the electrochemical oxidation process. The charge storage mechanism takes advantage of the high electrical conductivity and the morphology of cubic ruthenium nitride and Ru phases in the feather-like core, leading to high electrical conductivity in combination with high capacity. Accordingly, we have developed an analysis that relates capacity to time constant as a means of identifying materials capable of retaining high capacity at high charge/discharge rates.

3.
Small ; : e2402607, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860732

RESUMO

The demand for high-performance energy storage devices to power Internet of Things applications has driven intensive research on micro-supercapacitors (MSCs). In this study, RuN films made by magnetron sputtering as an efficient electrode material for MSCs are investigated. The sputtering parameters are carefully studied in order to maximize film porosity while maintaining high electrical conductivity, enabling a fast charging process. Using a combination of advanced techniques, the relationships among the morphology, structure, and electrochemical properties of the RuN films are investigated. The films are shown to have a complex structure containing a mixture of crystallized Ru and RuN phases with an amorphous oxide layer. The combination of high electrical conductivity and pseudocapacitive charge storage properties enabled a 16 µm-thick RuN film to achieve a capacitance value of 0.8 F cm-2 in 1 m KOH with ultra-high rate capability.

4.
Chem Rev ; 118(18): 9233-9280, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30204424

RESUMO

Ongoing technological advances in diverse fields including portable electronics, transportation, and green energy are often hindered by the insufficient capability of energy-storage devices. By taking advantage of two different electrode materials, asymmetric supercapacitors can extend their operating voltage window beyond the thermodynamic decomposition voltage of electrolytes while enabling a solution to the energy storage limitations of symmetric supercapacitors. This review provides comprehensive knowledge to this field. We first look at the essential energy-storage mechanisms and performance evaluation criteria for asymmetric supercapacitors to understand the wide-ranging research conducted in this area. Then we move to the recent progress made for the design and fabrication of electrode materials and the overall structure of asymmetric supercapacitors in different categories. We also highlight several key scientific challenges and present our perspectives on enhancing the electrochemical performance of future asymmetric supercapacitors.

5.
J Power Sources ; 4362019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31824126

RESUMO

Charging a commercial lithium-ion battery intercalates lithium into the graphite-based anode, creating various lithium carbide structures. Despite their economic importance, these structures and the dynamics of their charging-discharging transitions are not well-understood. We have videoed single microcrystals of high-quality, natural graphite undergoing multiple lithiation-delithiation cycles. Because the equilibrium lithium-carbide compounds corresponding to full, half, and one-third charge are gold, red, and blue respectively, video observations give direct insight into both the macromolecular structures and the kinematics of charging and discharging. We find that the transport during the first lithiation is slow and orderly, and follows the core-shell or shrinking annuli model with phase boundaries moving at constant velocities (i.e. non-diffusively). Subsequent lithiations are markedly different, showing transport that is both faster and disorderly, which indicates that the initially pristine graphite is irreversibly and considerably altered during the first cycle. In all cases deintercalation is not the time-reverse of intercalation. These findings both illustrate how lithium enters nearly defect-free host material, and highlight the differences between the idealized case and an actual, cycling graphite anode.

6.
J Am Chem Soc ; 140(20): 6317-6324, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29723475

RESUMO

The Lewis acid-base adduct approach has been widely used to form uniform perovskite films, which has provided a methodological base for the development of high-performance perovskite solar cells. However, its incompatibility with formamidinium (FA)-based perovskites has impeded further enhancement of photovoltaic performance and stability. Here, we report an efficient and reproducible method to fabricate highly uniform FAPbI3 films via the adduct approach. Replacement of the typical Lewis base dimethyl sulfoxide (DMSO) with N-methyl-2-pyrrolidone (NMP) enabled the formation of a stable intermediate adduct phase, which can be converted into a uniform and pinhole-free FAPbI3 film. Infrared and computational analyses revealed a stronger interaction between NMP with the FA cation than DMSO, which facilitates the formation of a stable FAI·PbI2·NMP adduct. On the basis of the molecular interactions with different Lewis bases, we proposed criteria for selecting the Lewis bases. Owed to the high film quality, perovskite solar cells with the highest PCE over 20% (stabilized PCE of 19.34%) and average PCE of 18.83 ± 0.73% were demonstrated.

7.
Nat Mater ; 16(4): 454-460, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27918566

RESUMO

The short charging times and high power capabilities associated with capacitive energy storage make this approach an attractive alternative to batteries. One limitation of electrochemical capacitors is their low energy density and for this reason, there is widespread interest in pseudocapacitive materials that use Faradaic reactions to store charge. One candidate pseudocapacitive material is orthorhombic MoO3 (α-MoO3), a layered compound with a high theoretical capacity for lithium (279 mA h g-1 or 1,005 C g-1). Here, we report on the properties of reduced α-MoO3-x(R-MoO3-x) and compare it with fully oxidized α-MoO3 (F-MoO3). The introduction of oxygen vacancies leads to a larger interlayer spacing that promotes faster charge storage kinetics and enables the α-MoO3 structure to be retained during the insertion and removal of Li ions. The higher specific capacity of the R-MoO3-x is attributed to the reversible formation of a significant amount of Mo4+ following lithiation. This study underscores the potential importance of incorporating oxygen vacancies into transition metal oxides as a strategy for increasing the charge storage kinetics of redox-active materials.

8.
Faraday Discuss ; 210(0): 55-67, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29972175

RESUMO

We present experimental approaches to probe the ionic conductivity of solid electrolytes at the meso- and nanoscales. Silica ionogel based electrolytes have emerged as an important class of solid electrolytes because they maintain both fluidic and high-conductivity states at the nanoscale, but at the macroscale they are basically solid. Single mesopores in polymer films are shown to serve as templates for cast ionogels. The ionic conductivity of the ionogels was probed by two experimental approaches. In the first approach, the single-pore/ionogel membranes were placed between two chambers of a conductivity cell, in a set-up similar to that used for investigating liquid electrolytes. The second approach involved depositing contacts directly onto the membrane and measuring conductivity without the bulk solution present. Ionic conductivity determined by the two methods was in excellent agreement with macroscopic measurements, which suggested that the electrochemical properties of ionogel based electrolytes are preserved at the mesoscale, and ionogels can be useful in designing meso-scaled energy-storage devices.

9.
Nano Lett ; 17(6): 3731-3737, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28535068

RESUMO

Research on lithium (Li) metal chemistry has been rapidly gaining momentum nowadays not only because of the appealing high theoretical capacity, but also its indispensable role in the next-generation Li-S and Li-air batteries. However, two root problems of Li metal, namely high reactivity and infinite relative volume change during cycling, bring about numerous other challenges that impede its practical applications. In the past, extensive studies have targeted these two root causes by either improving interfacial stability or constructing a stable host. However, efficient surface passivation on three-dimensional (3D) Li is still absent. Here, we develop a conformal LiF coating technique on Li surface with commercial Freon R134a as the reagent. In contrast to solid/liquid reagents, gaseous Freon exhibits not only nontoxicity and well-controlled reactivity, but also much better permeability that enables a uniform LiF coating even on 3D Li. By applying a LiF coating onto 3D layered Li-reduced graphene oxide (Li-rGO) electrodes, highly reduced side reactions and enhanced cycling stability without overpotential augment for over 200 cycles were proven in symmetric cells. Furthermore, Li-S cells with LiF protected Li-rGO exhibit significantly improved cyclability and Coulombic efficiency, while excellent rate capability (∼800 mAh g-1 at 2 C) can still be retained.

10.
Angew Chem Int Ed Engl ; 57(51): 16683-16687, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30334321

RESUMO

We demonstrate the synthesis of the first anionic aluminum metal-organic framework (MOFs) constructed from tetrahedral AlO4 sites. Al-Td-MOF-1 was obtained in a simple two-step synthesis by condensation of 1,4-dihydroxybenzene and lithium aluminum hydride into an amorphous aluminate framework before applying a solvothermal treatment under basic conditions to obtain the crystalline Al-Td-MOF-1 with a chemical composition of Li[Al(C6 H4 O2 )2 ]. The overall Al-Td-MOF-1 structure consists of one-dimensional chains of alternating edge-sharing AlO4 and LiO4 tetrahedral sites describing unidirectional pore channels with a square window aperture of ≈5×5 Å2 , best described topologically as a uninodal 6-coordinated snp rod net. Al-Td-MOF-1 features the highest Li+ loading reported to date for a MOF (2.50 wt %) and proved to be an effective single-ion solid electrolyte. An ionic conductivity of 5.7×10-5  S cm-1 was measured for Al-Td-MOF-1 and the beneficial contribution of crystallinity was evidenced by an 8-fold increase in conductivity between the disordered and crystalline material.

11.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L186-L195, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27941077

RESUMO

Bronchopulmonary dysplasia (BPD) is a common complication of premature birth. The histopathology of BPD is characterized by an arrest of alveolarization with fibroblast activation. The Wnt/ß-catenin signaling pathway is important in early lung development. When Wnt signaling is active, phosphorylation of ß-catenin by tyrosine kinases at activating sites, specifically at tyrosine 489 (Y489), correlates with nuclear localization of ß-catenin. We examined fetal lung tissue, lung tissue from term newborns, and lung tissue from infants who died with BPD; we found nuclear ß-catenin phosphorylation at Y489 in epithelial and mesenchymal cells in fetal tissue and BPD tissue, but not in the lungs of term infants. Using a 3D human organoid model, we found increased nuclear localization of ß-catenin phosphorylated at Y489 (p-ß-cateninY489) after exposure to alternating hypoxia and hyperoxia compared with organoids cultured in normoxia. Exogenous stimulation of the canonical Wnt pathway in organoids was sufficient to cause nuclear localization of p-ß-cateninY489 in normoxia and mimicked the pattern of α-smooth muscle actin (α-SMA) expression seen with fibroblastic activation from oxidative stress. Treatment of organoids with a tyrosine kinase inhibitor prior to cyclic hypoxia-hyperoxia inhibited nuclear localization of p-ß-cateninY489 and prevented α-SMA expression by fibroblasts. Posttranslational phosphorylation of ß-catenin is a transient feature of normal lung development. Moreover, the persistence of p-ß-cateninY489 is a durable marker of fibroblast activation in BPD and may play an important role in BPD disease pathobiology.


Assuntos
Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Processamento de Proteína Pós-Traducional , beta Catenina/metabolismo , Actinas/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dasatinibe/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Hipóxia/complicações , Hipóxia/metabolismo , Hipóxia/patologia , Recém-Nascido , Pulmão/efeitos dos fármacos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
12.
Langmuir ; 33(37): 9407-9415, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28545299

RESUMO

Composite structures for electrochemical energy storage are prepared on the basis of using the high-rate lithium ion insertion properties of Nb2O5. The Nb2O5 is anchored on reduced graphene oxide (rGO) by hydrothermal synthesis to improve the charge-transfer properties, and by controlling the surface charge, the resulting Nb2O5-rGO particles are attached to a high-surface-area carbide-derived carbon scaffold without blocking its exfoliated layers. The electrochemical results are analyzed using a recently published multiscale physics model that provides significant insights regarding charge storage kinetics. In particular, the composite electrode exhibits surface-confined charge storage at potentials of <1.7 V (vs Li/Li+), where faradaic processes dominate, and electrical double layer charge storage at potentials of >2.2 V. A hybrid device composed of the composite electrode with activated carbon as the positive electrode demonstrates increased energy density at power densities comparable to an activated carbon device, provided the hybrid device operates in the faradaic potential range.

13.
Int J Syst Evol Microbiol ; 67(11): 4345-4351, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28984546

RESUMO

A previously undescribed, rapidly growing, scotochromogenic species of the genus Mycobacterium (represented by strains PB739T and GK) was isolated from two clinical sources - the sputum of a 76-year-old patient with severe chronic obstructive pulmonary disease, history of tuberculosis exposure and Mycobacterium avium complex isolated years prior; and the blood of a 15-year-old male with B-cell acute lymphoblastic leukaemia status post bone marrow transplant. The isolates grew as dark orange colonies at 25-37 °C after 5 days, sharing features in common with other closely related species. Analysis of the complete 16S rRNA gene sequence (1492 bp) of strain PB739T demonstrated that the isolate shared 98.8 % relatedness with Mycobacterium wolinskyi. Partial 429 bp hsp65 and 744 bp rpoB region V sequence analyses revealed that the sequences of the novel isolate shared 94.8 and 92.1 % similarity with those of Mycobacterium neoaurum and Mycobacterium aurum, respectively. Biochemical profiling, antimicrobial susceptibility testing, HPLC/gas-liquid chromatography analyses and multilocus sequence typing support the taxonomic status of these isolates (PB739T and GK) as representatives of a novel species. Both isolates were susceptible to the Clinical and Laboratory Standards Institute recommended antimicrobials for susceptibility testing of rapidly growing mycobacteria including amikacin, ciprofloxacin, moxifloxacin, doxycycline/minocycline, imipenem, linezolid, clarithromycin and trimethropin/sulfamethoxazole. Both isolates PB739T and GK showed intermediate susceptibility to cefoxitin. We propose the name Mycobacterium grossiae sp. nov. for this novel species and have deposited the type strain in the DSMZ and CIP culture collections. The type strain is PB739T (=DSM 104744T=CIP 111318T).


Assuntos
Infecções por Mycobacterium/microbiologia , Mycobacterium/classificação , Filogenia , Adolescente , Idoso , Técnicas de Tipagem Bacteriana , Hemocultura , DNA Bacteriano/genética , Humanos , Masculino , Tipagem de Sequências Multilocus , Mycobacterium/genética , Mycobacterium/isolamento & purificação , Infecções por Mycobacterium/sangue , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Escarro/microbiologia
14.
Am J Physiol Lung Cell Mol Physiol ; 310(10): L889-98, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968771

RESUMO

Bronchopulmonary dysplasia (BPD) is a leading complication of premature birth and occurs primarily in infants delivered during the saccular stage of lung development. Histopathology shows decreased alveolarization and a pattern of fibroblast proliferation and differentiation to the myofibroblast phenotype. Little is known about the molecular pathways and cellular mechanisms that define BPD pathophysiology and progression. We have developed a novel three-dimensional human model of the fibroblast activation associated with BPD, and using this model we have identified the Notch pathway as a key driver of fibroblast activation and proliferation in response to changes in oxygen. Fetal lung fibroblasts were cultured on sodium alginate beads to generate lung organoids. After exposure to alternating hypoxia and hyperoxia, the organoids developed a phenotypic response characterized by increased α-smooth muscle actin (α-SMA) expression and other genes known to be upregulated in BPD and also demonstrated increased expression of downstream effectors of the Notch pathway. Inhibition of Notch with a γ-secretase inhibitor prevented the development of the pattern of cellular proliferation and α-SMA expression in our model. Analysis of human autopsy tissue from the lungs of infants who expired with BPD demonstrated evidence of Notch activation within fibrotic areas of the alveolar septae, suggesting that Notch may be a key driver of BPD pathophysiology.


Assuntos
Displasia Broncopulmonar/patologia , Transdução de Sinais , Alginatos/química , Displasia Broncopulmonar/metabolismo , Técnicas de Cultura de Células , Hipóxia Celular , Células Cultivadas , Meios de Cultura/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Receptores Notch/metabolismo
15.
Nanotechnology ; 27(3): 035204, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26650708

RESUMO

To exceed the performance limits of dielectric capacitors in microelectronic circuit applications, we design and demonstrate on-chip coplanar electric double-layer capacitors (EDLCs), or supercapacitors, employing carbon-coated gold electrodes with ionogel electrolyte. The formation of carbon-coated microelectrodes is accomplished by solution processing and results in a ten-fold increase in EDLC capacitance compared to bare gold electrodes without carbon. At frequencies up to 10 Hz, an areal capacitance of 2.1 pF µm(-2) is achieved for coplanar carbon-ionogel EDLCs with 10 µm electrode gaps and 0.14 mm(2) electrode area. Our smallest devices, comprised of 5 µm electrode gaps and 80 µm(2) of active electrode area, reach areal capacitance values of ∼0.3 pF µm(-2) at frequencies up to 1 kHz, even without carbon. To our knowledge, these are the highest reported values to date for on-chip EDLCs with sub-mm(2) areas. A physical EDLC model is developed through the use of computer-aided simulations for design exploration and optimization of coplanar EDLCs. Through modeling and comparison with experimental data, we highlight the importance of reducing the electrode gap and electrolyte resistance to achieve maximum performance from on-chip EDLCs.

16.
Macromol Rapid Commun ; 37(5): 446-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26785633

RESUMO

A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanoestruturas/química , Polímeros/síntese química , Siloxanas/síntese química , Cátions Monovalentes , Condutividade Elétrica , Teste de Materiais , Transição de Fase , Polimerização , Temperatura , Volatilização
17.
Nano Lett ; 15(3): 1911-7, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25654445

RESUMO

Single-layer and few-layer transition metal dichalcogenides have been extensively studied for their electronic properties, but their energy-storage potential has not been well explored. This paper describes the structural and electrochemical properties of few-layer TiS2 nanocrystals. The two-dimensional morphology leads to very different behavior, compared to corresponding bulk materials. Only small structural changes occur during lithiation/delithiation and charge storage characteristics are consistent with intercalation pseudocapacitance, leading to materials that exhibit both high energy and power density.


Assuntos
Calcogênios/química , Capacitância Elétrica , Fontes de Energia Elétrica , Eletrônica/instrumentação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Cristalização/métodos , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
18.
Nat Mater ; 12(6): 518-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584143

RESUMO

Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 µm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices.


Assuntos
Eletroquímica/instrumentação , Eletroquímica/métodos , Lítio/química , Eletrodos , Substâncias Intercalantes/química , Nanoestruturas/química , Nióbio/química , Óxidos/química
19.
Acc Chem Res ; 46(5): 1113-24, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23485203

RESUMO

Growing global energy demands coupled with environmental concerns have increased the need for renewable energy sources. For intermittent renewable sources like solar and wind to become available on demand will require the use of energy storage devices. Batteries and supercapacitors, also known as electrochemical capacitors (ECs), represent the most widely used energy storage devices. Supercapacitors are frequently overlooked as an energy storage technology, however, despite the fact that these devices provide greater power, much faster response times, and longer cycle life than batteries. Their limitation is that the energy density of ECs is significantly lower than that of batteries, and this has limited their potential applications. This Account reviews our recent work on improving pseudocapacitive energy storage performance by tailoring the electrode architecture. We report our studies of mesoporous transition metal oxide architectures that store charge through surface or near-surface redox reactions, a phenomenon termed pseudocapacitance. The faradaic nature of pseudocapacitance leads to significant increases in energy density and thus represents an exciting future direction for ECs. We show that both the choice of material and electrode architecture is important for producing the ideal pseudocapacitor device. Here we first briefly review the current state of electrode architectures for pseudocapacitors, from slurry electrodes to carbon/metal oxide composites. We then describe the synthesis of mesoporous films made with amphiphilic diblock copolymer templating agents, specifically those optimized for pseudocapacitive charge storage. These include films synthesized from nanoparticle building blocks and films made from traditional battery materials. In the case of more traditional battery materials, we focus on using flexible architectures to minimize the strain associated with lithium intercalation, that is, the accumulation of lithium ions or atoms between the layers of cathode or anode materials that occurs as batteries charge and discharge. Electrochemical analysis of these mesoporous films allows for a detailed understanding of the origin of charge storage by separating capacitive contributions from traditional diffusion-controlled intercalation processes. We also discuss methods to separate the two contributions to capacitance: double-layer capacitance and pseudocapacitance. Understanding these contributions should allow the selection of materials with an optimized architecture that maximize the contribution from pseudocapacitance. From our studies, we show that nanocrystal-based nanoporous materials offer an architecture optimized for high levels of redox or surface pseudocapacitance. Interestingly, in some cases, materials engineered to minimize the strain associated with lithium insertion can also show intercalation pseudocapacitance, which is a process where insertion processes become so kinetically facile that they appear capacitive. Finally, we conclude with a summary of simple design rules that should result in high-power, high-energy-density electrode architectures. These design rules include assembling small, nanosized building blocks to maximize electrode surface area; maintaining an interconnected, open mesoporosity to facilitate solvent diffusion; seeking flexibility in electrode structure to facilitate volume expansion during lithium insertion; optimizing crystalline domain size and orientation; and creating effective electron transport pathways.

20.
J Exp Zool A Ecol Integr Physiol ; 341(5): 544-552, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38462737

RESUMO

The hatch rate of chick embryos cultured outside of the eggshell with 350 mg calcium l-lactate hydrate (CaL) and 3.5 mL water is fourfold greater in cultures in which the chorioallantoic membrane (CAM) surrounds the egg contents by incubation day 17.5 (E17.5) an event which occurs in ovo by E13. It was first investigated whether decreasing the volume of water added with 350 mg CaL would promote CAM expansion due to the smaller volume to enclose. When 350 mg CaL was present, the CAM did not surround the egg contents by E13. By E17.5, the CAM surrounded the egg contents in 53%-74% of cultures; however, CAM expansion was not significantly different when 0, 1, 2, or 3.5 mL water was present. The hatch rate with 2 or 3.5 mL water was greater than 50% but was not improved with less water. Second, it was investigated whether CaL or water inhibits CAM expansion. In the absence of CaL, the CAM surrounded the egg contents in up to two-thirds of cultures by E13, whether 2 mL water was present or not. Thus CaL, but not water, inhibits expansion of the CAM by E13, even though CaL promotes hatching. Finally, it was investigated whether injection of aqueous CaL into the allantoic fluid, in conjunction with not adding CaL to culture hammocks, would promote CAM expansion. Allantoic injection of CaL starting at E13 did not promote CAM expansion at E17.5 but resulted in hatch rates of approximately 30%. Allantoic injection is a novel route for supplementation of calcium in cultured chick embryos.


Assuntos
Membrana Corioalantoide , Animais , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Alantoide , Cálcio/metabolismo , Compostos de Cálcio/farmacologia , Compostos de Cálcio/administração & dosagem , Técnicas de Cultura Embrionária/veterinária , Lactatos/administração & dosagem , Casca de Ovo , Injeções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA