RESUMO
IMPORTANCE: Infection with herpes simplex virus 1 (HSV-1) leads to lifelong infection due to the virus's remarkable ability to control transcription of its own genome, resulting in two transcriptional programs: lytic (highly active) and latent (restricted). The lytic program requires immediate early (IE) proteins to first repress transcription of late viral genes, which then undergo sequential de-repression, leading to a specific sequence of gene expression. Here, we show that the IE ICP4 functions to regulate the cascade by limiting RNA polymerase initiation at immediate early times. However, late viral genes that initiate too early in the absence of ICP4 do not yield mRNA as transcription stalls within gene bodies. It follows that other regulatory steps intercede to prevent elongation of genes at the incorrect time, demonstrating the precise control HSV-1 exerts over its own transcription.
Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Transcrição Gênica , Humanos , Genes Virais/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/deficiência , Proteínas Imediatamente Precoces/metabolismo , Iniciação da Transcrição Genética , Elongação da Transcrição Genética , Terminação da Transcrição GenéticaRESUMO
The ability of Epstein-Barr virus (EBV) to switch between latent and lytic infection is key to its long-term persistence, yet the molecular mechanisms behind this switch remain unclear. To investigate transcriptional events during the latent-to-lytic switch, we utilized Precision nuclear Run On followed by deep Sequencing (PRO-Seq) to map cellular RNA polymerase (Pol) activity to single-nucleotide resolution on the host and EBV genome in three different models of EBV latency and reactivation. In latently infected Mutu-I Burkitt lymphoma (BL) cells, Pol activity was enriched at the Qp promoter, the EBER region, and the BHLF1/LF3 transcripts. Upon reactivation with phorbol ester and sodium butyrate, early-phase Pol activity occurred bidirectionally at CTCF sites within the LMP-2A, EBER-1, and RPMS1 loci. PRO-Seq analysis of Akata cells reactivated from latency with anti-IgG and a lymphoblastoid cell line (LCL) reactivated with small molecule C60 showed a similar pattern of early bidirectional transcription initiating around CTCF binding sites, although the specific CTCF sites and viral genes were different for each latency model. The functional importance of CTCF binding, transcription, and reactivation was confirmed using an EBV mutant lacking the LMP-2A CTCF binding site. This virus was unable to reactivate and had disrupted Pol activity at multiple CTCF binding sites relative to the wild-type (WT) virus. Overall, these data suggest that CTCF regulates the viral early transcripts during reactivation from latency. These activities likely help maintain the accessibility of the viral genome to initiate productive replication. IMPORTANCE The ability of EBV to switch between latent and lytic infection is key to its long-term persistence in memory B cells, and its ability to persist in proliferating cells is strongly linked to oncogenesis. During latency, most viral genes are epigenetically silenced, and the virus must overcome this repression to reactivate lytic replication. Reactivation occurs once the immediate early (IE) EBV lytic genes are expressed. However, the molecular mechanisms behind the switch from the latent transcriptional program to begin transcription of the IE genes remain unknown. In this study, we mapped RNA Pol positioning and activity during latency and reactivation. Unexpectedly, Pol activity accumulated at distinct regions characteristic of transcription initiation on the EBV genome previously shown to be associated with CTCF. We propose that CTCF binding at these regions retains Pol to maintain a stable latent chromosome conformation and a rapid response to various reactivation signals.
Assuntos
Fator de Ligação a CCCTC , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , RNA Polimerase Dependente de RNA , Ativação Viral , Humanos , Sítios de Ligação , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Latência Viral , RNA Polimerase Dependente de RNA/metabolismo , Linhagem Celular Tumoral , Fator de Ligação a CCCTC/metabolismoRESUMO
Herpes simplex virus 1 (HSV-1) utilizes cellular RNA polymerase II (Pol) to transcribe its genes in one of two phases. In the latent phase, viral transcription is highly restricted, but during the productive lytic phase, more than 80 genes are expressed in a temporally coordinated cascade. In this study, we used Precision nuclear Run On followed by deep Sequencing (PRO-Seq) to characterize early viral transcriptional events using HSV-1 immediate early (IE) gene mutants, corresponding genetically repaired viruses, and wild-type virus. Unexpectedly, in the absence of the IE genes ICP4, ICP22, and ICP0 at 1.5 hours postinfection (hpi), we observed high levels of aberrant transcriptional activity across the mutant viral genomes but substantially less on either wild-type or the congenic repaired virus genomes. This feature was particularly prominent in the absence of ICP4 expression. Cycloheximide treatment during infection with both the ICP4 and ICP22 mutants and their respective genetic repairs did not alter the relative distribution of Pol activity, but it increased overall activity across both viral genomes, indicating that both virion components and at least some de novo protein synthesis were required for full repression. Overall, these data reveal that prior to their role in transcriptional activation, IE gene products and virion components first repress transcription and that the HSV-1 lytic transcriptional cascade is mediated through subsequent derepression steps. IMPORTANCE HSV-1 transcription during productive replication is believed to comprise a series of activation steps leading to a specific sequence of gene expression. Here, we show that virion components and IE gene products ICP0, ICP4, and ICP22 first repress viral gene transcription to various degrees before subsequently activating specific gene subsets. It follows that the entire HSV transcriptional program involves a series of steps to sequentially reverse this repression. This previously uncharacterized repressive activity of IE genes very early in infection may represent an important checkpoint allowing HSV-1 to orchestrate either the robust lytic transcriptional cascade or the more restricted transcriptional program during latency.
Assuntos
Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Transcrição Viral , Animais , Humanos , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células Vero , Replicação ViralRESUMO
BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.
Assuntos
Vírus da Febre Suína Africana , Doenças Transmissíveis , Vírus da Febre Suína Africana/genética , Animais , Interações Hospedeiro-Patógeno/genética , Macrófagos , Células-Tronco , SuínosRESUMO
African swine fever virus (ASFV) causes a lethal hemorrhagic disease of domestic pigs, against which no vaccine is available. ASFV has a large, double-stranded DNA genome that encodes over 150 proteins. Replication takes place predominantly in the cytoplasm of the cell and involves complex interactions with host cellular components, including small noncoding RNAs (sncRNAs). A number of DNA viruses are known to manipulate sncRNA either by encoding their own or disrupting host sncRNA. To investigate the interplay between ASFV and sncRNAs, a study of host and viral small RNAs extracted from ASFV-infected primary porcine macrophages (PAMs) was undertaken. We discovered that ASFV infection had only a modest effect on host miRNAs, with only 6 miRNAs differentially expressed during infection. The data also revealed 3 potential novel small RNAs encoded by ASFV, ASFVsRNA1-3. Further investigation of ASFVsRNA2 detected it in lymphoid tissue from pigs with ASF. Overexpression of ASFVsRNA2 led to an up to 1-log reduction in ASFV growth, indicating that ASFV utilizes a virus-encoded small RNA to disrupt its own replication.IMPORTANCE African swine fever (ASF) poses a major threat to pig populations and food security worldwide. The disease is endemic to Africa and Eastern Europe and is rapidly emerging into Asia, where it has led to the deaths of millions of pigs in the last 12 months. The development of safe and effective vaccines to protect pigs against ASF has been hindered by lack of understanding of the complex interactions between ASFV and the host cell. We focused our work on characterizing the interactions between ASFV and sncRNAs. Although comparatively modest changes to host sncRNA abundances were observed upon ASFV infection, we discovered and characterized a novel functional ASFV-encoded sncRNA. The results from this study add important insights into ASFV host-pathogen interactions. This knowledge may be exploited to develop more effective ASFV vaccines that take advantage of the sncRNA system.
Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Pequeno RNA não Traduzido/genética , RNA Viral/genética , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/metabolismo , Animais , Regulação da Expressão Gênica , Tamanho do Genoma , Tecido Linfoide , Macrófagos , MicroRNAs/classificação , MicroRNAs/metabolismo , Cultura Primária de Células , Pequeno RNA não Traduzido/classificação , Pequeno RNA não Traduzido/metabolismo , RNA Viral/classificação , RNA Viral/metabolismo , Transdução de Sinais , Sus scrofa , Suínos , Replicação ViralRESUMO
The herpes virus genome bears more than 80 strong transcriptional promoters. Upon entry into the host cell nucleus, these genes are transcribed in an orderly manner, producing five immediate-early (IE) gene products, including ICP0, ICP4, and ICP22, while non-IE genes are mostly silent. The IE gene products are necessary for the transcription of temporal classes following sequentially as early, leaky late, and true late. A recent analysis using precision nuclear run-on followed by deep sequencing (PRO-seq) has revealed an important step preceding all HSV-1 transcription. Specifically, the immediate-early proteins ICP4 and ICP0 enter the cell with the incoming genome to help preclude the nascent antisense, intergenic, and sense transcription of all viral genes. VP16, which is also delivered into the nucleus upon entry, almost immediately reverses this repression on IE genes. The resulting de novo expression of ICP4 and ICP22 further repress antisense, intergenic, and early and late viral gene transcription through different mechanisms before the sequential de-repression of these gene classes later in infection. This early repression, termed transient immediate-early protein-mediated repression (TIEMR), precludes unproductive, antisense, intergenic, and late gene transcription early in infection to ensure the efficient and orderly progression of the viral cascade.