Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chromatogr A ; 1717: 464665, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38281342

RESUMO

For method development in gas chromatography, suitable computer simulations can be very helpful during the optimization process. For such computer simulations retention parameters are needed, that describe the interaction of the analytes with the stationary phase during the separation process. There are different approaches to describe such an interaction, e.g. thermodynamic models like Blumberg's distribution-centric 3-parameter model (K-centric model) or models using chemical properties like the Linear Solvation Energy Relationships (LSER). In this work LSER models for a Rxi-17Sil MS and a Rxi-5Sil MS GC column are developed for different temperatures. The influences of the temperature to the LSER system coefficients are shown in a range between 40 and 200 °C and can be described with Clark and Glew's ABC model as fit function. A thermodynamic interpretation of the system constants is given and its contribution to enthalpy and entropy is calculated. An estimation method for the retention parameters of the K-centric model via LSER models were presented. The predicted retention parameters for a selection of 172 various compounds, such as FAMEs, PCBs and PAHs are compared to isothermal determined values. 40 measurements of temperature programmed GC separations are compared to computer simulations using the differently determined or estimated K-centric retention parameters. The mean difference (RSME) between the measured and predicted retention time is less than 8 s for both stationary phases using the isothermal retention parameters. With the LSER predicted parameters the difference is 20 s for the Rxi-5Sil MS and 38 s for the Rxi-17Sil MS. Therefore, the presented estimation method can be recommended for first method development in gas chromatography.


Assuntos
Cromatografia Gasosa , Cromatografia Gasosa/métodos , Simulação por Computador , Termodinâmica , Temperatura , Entropia
2.
J Chromatogr A ; 1730: 465039, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38901296

RESUMO

A system consisting of a thermal desorption unit (TDU) and micro thermal desorption tubes (µTD-tubes, 1.4 mm I.D., 10mg Tenax TA) for fast desorption of analytes was developed for the efficient combination of hyper fast gas chromatography with thermal desorption. The fast desorption is achieved by a significantly reduced thermal mass compared to conventional thermal desorption tubes. Therefore, extremely fast heating and cooling cycles are possible. Proof of concept measurements combining the new setup with a flow-field thermal gradient gas chromatograph (FF-TG-GC) and FID detection show good precision and linearity with R2≥0.995 in the analysis of an n-alkane mix (C8-C20). Thermal desorption occurs within 12s. The impact of reduced µTD-tube dimensions on desorption time, full width at half maximum (FWHM), breakthrough volumes, tube flow rates ergo linear velocities, porosity and back pressure is discussed.


Assuntos
Alcanos , Cromatografia Gasosa/métodos , Cromatografia Gasosa/instrumentação , Alcanos/análise , Alcanos/química , Desenho de Equipamento , Temperatura , Porosidade
3.
ACS Omega ; 8(22): 19708-19718, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305293

RESUMO

This work presents an open source database with suitable retention parameters for prediction and simulation of GC separations and gives a short introduction to three common retention models. Useful computer simulations play an important role to save resources and time in method development in GC. Thermodynamic retention parameters for the ABC model and the K-centric model are determined by isothermal measurements. This standardized procedure of measurements and calculations, presented in this work, have a useful benefit for all chromatographers, analytical chemists, and method developers because it can be used in their own laboratories to simplify the method development. The main benefits as simulations of temperature-programed GC separations are demonstrated and compared to measurements. The observed deviations of predicted retention times are in most cases less than 1%. The database includes more than 900 entries with a large range of compounds such as VOCs, PAHs, FAMEs, PCBs, or allergenic fragrances over 20 different GC columns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA