Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plant J ; 108(5): 1507-1521, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34612534

RESUMO

STOP1, an Arabidopsis transcription factor favouring root growth tolerance against Al toxicity, acts in the response to iron under low Pi (-Pi). Previous studies have shown that Al and Fe regulate the stability and accumulation of STOP1 in roots, and that the STOP1 protein is sumoylated by an unknown E3 ligase. Here, using a forward genetics suppressor screen, we identified the E3 SUMO (small ubiquitin-like modifier) ligase SIZ1 as a modulator of STOP1 signalling. Mutations in SIZ1 increase the expression of ALMT1 (a direct target of STOP1) and root growth responses to Al and Fe stress in a STOP1-dependent manner. Moreover, loss-of-function mutations in SIZ1 enhance the abundance of STOP1 in the root tip. However, no sumoylated STOP1 protein was detected by Western blot analysis in our sumoylation assay in Escherichia coli, suggesting the presence of a more sophisticated mechanism. We conclude that the sumo ligase SIZ1 negatively regulates STOP1 signalling, at least in part by modulating STOP1 protein in the root tip. Our results will allow a better understanding of this signalling pathway.


Assuntos
Alumínio/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ferro/toxicidade , Ligases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ligases/genética , Mutação , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Fisiológico , Sumoilação , Fatores de Transcrição/genética
2.
Front Plant Sci ; 13: 785791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592558

RESUMO

Aluminum (Al) is a major limiting factor for crop production on acidic soils, inhibiting root growth and plant development. At acidic pH (pH < 5.5), Al3+ ions are the main form of Al present in the media. Al3+ ions have an increased solubility at pH < 5.5 and result in plant toxicity. At higher pH, the free Al3+ fraction decreases in the media, but whether plants can detect Al at these pHs remain unknown. To cope with Al stress, the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) transcription factor induces AL-ACTIVATED MALATE TRANSPORTER1 (ALMT1), a malate-exuding transporter as a strategy to chelate the toxic ions in the rhizosphere. Here, we uncoupled the Al signalling pathway that controls STOP1 from Al toxicity using wild type (WT) and two stop1 mutants carrying the pALMT1:GUS construct with an agar powder naturally containing low amounts of phosphate, iron (Fe), and Al. We combined gene expression [real-time PCR (RT-PCR) and the pALMT1:GUS reporter], confocal microscopy (pSTOP1:GFP-STOP1 reporter), and root growth measurement to assess the effects of Al and Fe on the STOP1-ALMT1 pathway in roots. Our results show that Al triggers STOP1 signaling at a concentration as little as 2 µM and can be detected at a pH above 6.0. We observed that at pH 5.7, 20 µM AlCl3 induces ALMT1 in WT but does not inhibit root growth in stop1 Al-hypersensitive mutants. Increasing AlCl3 concentration (>50 µM) at pH 5.7 results in the inhibition of the stop1 mutants primary root. Using the green fluorescent protein (GFP)-STOP1 and ALMT1 reporters, we show that the Al signal pathway can be uncoupled from the Al toxicity on the root. Furthermore, we observe that Al strengthens the Fe-mediated inhibition of primary root growth in WT, suggesting an interaction between Fe and Al on the STOP1-ALMT1 pathway.

3.
PLoS One ; 8(9): e73795, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058489

RESUMO

The identification of past glacial refugia has become a key topic for conservation under environmental change, since they contribute importantly to shaping current patterns of biodiversity. However, little attention has been paid so far to interglacial refugia despite their key role for the survival of relict species currently occurring in climate refugia. Here, we focus on the genetic consequences of range contraction on the relict populations of the evergreen shrub Myrtus nivellei, endemic in the Saharan mountains since at least the end of the last Green Sahara period, around 5.5 ka B.P. Multilocus genotypes (nuclear microsatellites and AFLP) were obtained from 215 individuals collected from 23 wadis (temporary rivers) in the three main mountain ranges in southern Algeria (the Hoggar, Tassili n'Ajjer and Tassili n'Immidir ranges). Identical genotypes were found in several plants growing far apart within the same wadis, a pattern taken as evidence of clonality. Multivariate analyses and Bayesian clustering revealed that genetic diversity was mainly structured among the mountain ranges, while low isolation by distance was observed within each mountain range. The range contraction induced by the last episode of aridification has likely increased the genetic isolation of the populations of M. nivellei, without greatly affecting the genetic diversity of the species as a whole. The pattern of genetic diversity observed here suggests that high connectivity may have prevailed during humid periods, which is consistent with recent paleoenvironmental reconstructions.


Assuntos
Adaptação Fisiológica/genética , Variação Genética , Genótipo , Repetições de Microssatélites , Família Multigênica , Myrtus/genética , África do Norte , Altitude , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Clima Desértico , Ecossistema , Água Doce , Análise Multivariada , Myrtus/classificação , Filogenia , Filogeografia
4.
J Phycol ; 48(6): 1465-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27009997

RESUMO

Halimeda is a genus of calcified and segmented green macroalgae in the order Bryopsidales. In New Caledonia, the genus is abundant and represents an important part of the reef flora. Previous studies recorded 19 species that were identified using morphological criteria. The aim of this work was to reassess the diversity of the genus in New Caledonia using morpho-anatomical examinations and molecular analyses of the plastid tufA and rbcL genes. Our results suggest the occurrence of 22 species. Three of these are reported for the first time from New Caledonia: Halimeda kanaloana, H. xishaensis, and an entity resembling H. stuposa. DNA analyses revealed that the species H. fragilis exhibits cryptic or pseudocryptic diversity in New Caledonia. We also show less conclusive evidence for cryptic species within H. taenicola.

5.
C R Biol ; 332(7): 652-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19523605

RESUMO

The effects of landscape configuration on the genetic connectivity of the heterostylous species Primula vulgaris Huds. (Primulaceae) were studied using AFLP markers. Isolation by distance pattern was shown by spatial autocorrelation analysis; moreover, hedgerow network distances were found to contribute less than Euclidian distances to spatial genetic structure. Pollen flow is probably the main factor shaping the spatial genetic structure rather than seed dispersal, which is limited in this myrmecochorous species. Detailed analysis on the genetic similarity between neighborhoods and differentiation rates showed that density of hedgerow networks impede gene flow. We therefore concluded that a high degree of habitat contiguity does not necessarily promote genetic connectivity.


Assuntos
Agricultura , Genes de Plantas/fisiologia , Variação Genética , Primula/genética , DNA de Plantas/genética , Interpretação Estatística de Dados , França , Marcadores Genéticos , Pólen/fisiologia , Polimorfismo Genético/genética , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA