Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(5): 556-564, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36894723

RESUMO

Anaerobic microbial metabolism drives critical functions within global ecosystems, host-microbiota interactions, and industrial applications, yet remains ill-defined. Here we advance a versatile approach to elaborate cellular metabolism in obligate anaerobes using the pathogen Clostridioides difficile, an amino acid and carbohydrate-fermenting Clostridia. High-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy of C. difficile, grown with fermentable 13C substrates, informed dynamic flux balance analysis (dFBA) of the pathogen's genome-scale metabolism. Analyses identified dynamic recruitment of oxidative and supporting reductive pathways, with integration of high-flux amino acid and glycolytic metabolism at alanine's biosynthesis to support efficient energy generation, nitrogen handling and biomass generation. Model predictions informed an approach leveraging the sensitivity of 13C NMR spectroscopy to simultaneously track cellular carbon and nitrogen flow from [U-13C]glucose and [15N]leucine, confirming the formation of [13C,15N]alanine. Findings identify metabolic strategies used by C. difficile to support its rapid colonization and expansion in gut ecosystems.


Assuntos
Clostridioides difficile , Anaerobiose , Ecossistema , Espectroscopia de Ressonância Magnética/métodos , Aminoácidos , Alanina
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145026

RESUMO

Bacteroides thetaiotaomicron is a gut symbiont that inhabits the mucus layer and adheres to and metabolizes food particles, contributing to gut physiology and maturation. Although adhesion and biofilm formation could be key features for B. thetaiotaomicron stress resistance and gut colonization, little is known about the determinants of B. thetaiotaomicron biofilm formation. We previously showed that the B. thetaiotaomicron reference strain VPI-5482 is a poor in vitro biofilm former. Here, we demonstrated that bile, a gut-relevant environmental cue, triggers the formation of biofilm in many B. thetaiotaomicron isolates and common gut Bacteroidales species. We determined that bile-dependent biofilm formation involves the production of the DNase BT3563 or its homologs, degrading extracellular DNA (eDNA) in several B. thetaiotaomicron strains. Our study therefore shows that, although biofilm matrix eDNA provides a biofilm-promoting scaffold in many studied Firmicutes and Proteobacteria, BT3563-mediated eDNA degradation is required to form B. thetaiotaomicron biofilm in the presence of bile.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Bile/metabolismo , Biofilmes/crescimento & desenvolvimento , Desoxirribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonucleases/genética , Regulação Enzimológica da Expressão Gênica/fisiologia
3.
J Am Chem Soc ; 143(10): 3697-3702, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33651603

RESUMO

Cyclic polymers display unique physicochemical and biological properties. However, their development is often limited by their challenging preparation. In this work, we present a simple route to cyclic poly(α-peptoids) from N-alkylated-N-carboxyanhydrides (NNCA) using LiHMDS promoted ring-expansion polymerization (REP) in DMF. This new method allows the unprecedented use of lysine-like monomers in REP to design bioactive macrocycles bearing pharmaceutical potential against Clostridioides difficile, a bacterium responsible for nosocomial infections.


Assuntos
Peptoides/química , Polímeros/química , Compostos de Trimetilsilil/química , Catálise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Ciclização , Teoria da Densidade Funcional , Humanos , Testes de Sensibilidade Microbiana , Polimerização , Polímeros/síntese química , Polímeros/farmacologia
4.
RNA Biol ; 18(11): 1931-1952, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33629931

RESUMO

Noncoding RNAs (ncRNA) have emerged as important components of regulatory networks governing bacterial physiology and virulence. Previous deep-sequencing analysis identified a large diversity of ncRNAs in the human enteropathogen Clostridioides (Clostridium) difficile. Some of them are trans-encoded RNAs that could require the RNA chaperone protein Hfq for their action. Recent analysis suggested a pleiotropic role of Hfq in C. difficile with the most pronounced effect on sporulation, a key process during the infectious cycle of this pathogen. However, a global view of RNAs interacting with C. difficile Hfq is missing. In the present study, we performed RNA immunoprecipitation high-throughput sequencing (RIP-Seq) to identify Hfq-associated RNAs in C. difficile. Our work revealed a large set of Hfq-interacting mRNAs and ncRNAs, including mRNA leaders and coding regions, known and potential new ncRNAs. In addition to trans-encoded RNAs, new categories of Hfq ligands were found including cis-antisense RNAs, riboswitches and CRISPR RNAs. ncRNA-mRNA and ncRNA-ncRNA pairings were postulated through computational predictions. Investigation of one of the Hfq-associated ncRNAs, RCd1, suggests that this RNA contributes to the control of late stages of sporulation in C. difficile. Altogether, these data provide essential molecular basis for further studies of post-transcriptional regulatory network in this enteropathogen.


Assuntos
Clostridioides difficile/crescimento & desenvolvimento , Clostridioides/fisiologia , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Esporos Bacterianos/fisiologia , Virulência , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Genoma Bacteriano , Fator Proteico 1 do Hospedeiro/genética , Humanos , RNA Bacteriano/genética
5.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32631945

RESUMO

Clostridioides difficile is an etiological agent for antibiotic-associated diarrheal disease. C. difficile produces a phenolic compound, para-cresol, which selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. C. difficile decarboxylates para-hydroxyphenylacetate (p-HPA) to produce p-cresol by the action of the HpdBCA decarboxylase encoded by the hpdBCA operon. Here, we investigate regulation of the hpdBCA operon and directly compare three independent reporter systems; SNAP-tag, glucuronidase gusA, and alkaline phosphatase phoZ reporters to detect basal and inducible expression. We show that expression of hpdBCA is upregulated in response to elevated p-HPA. In silico analysis identified three putative promoters upstream of hpdBCA operon-P1, P2, and Pσ54; only the P1 promoter was responsible for both basal and p-HPA-inducible expression of hpdBCA We demonstrated that turnover of tyrosine, a precursor for p-HPA, is insufficient to induce expression of the hpdBCA operon above basal levels because it is inefficiently converted to p-HPA in minimal media. We show that induction of the hpdBCA operon in response to p-HPA occurs in a dose-dependent manner. We also identified an inverted palindromic repeat (AAAAAG-N13-CTTTTT) upstream of the hpdBCA start codon (ATG) that is essential for inducing transcription of the hpdBCA operon in response to p-HPA, which drives the production of p-cresol. This provides insights into the regulatory control of p-cresol production, which affords a competitive advantage for C. difficile over other intestinal bacteria, promoting dysbiosis.IMPORTANCEClostridioides difficile infection results from antibiotic-associated dysbiosis. para-Cresol, a phenolic compound produced by C. difficile, selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. Here, we demonstrate that expression of the hpdBCA operon, encoding the HpdBCA decarboxylase which converts p-HPA to p-cresol, is upregulated in response to elevated exogenous p-HPA, with induction occurring between >0.1 and ≤0.25 mg/ml. We determined a single promoter and an inverted palindromic repeat responsible for basal and p-HPA-inducible hpdBCA expression. We identified turnover of tyrosine, a p-HPA precursor, does not induce hpdBCA expression above basal level, indicating that exogenous p-HPA was required for p-cresol production. Identifying regulatory controls of p-cresol production will provide novel therapeutic targets to prevent p-cresol production, reducing C. difficile's competitive advantage.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Clostridioides difficile/metabolismo , Cresóis/metabolismo , Fenilacetatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas
6.
Mol Microbiol ; 111(6): 1671-1688, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30882947

RESUMO

For the human pathogen Clostridioides (also known as Clostridium) difficile, the ability to adapt to nutrient availability is critical for its proliferation and production of toxins during infection. Synthesis of the toxins is regulated by the availability of certain carbon sources, fermentation products and amino acids (e.g. proline, cysteine, isoleucine, leucine and valine). The effect of proline is attributable at least in part to its role as an inducer and substrate of D-proline reductase (PR), a Stickland reaction that regenerates NAD+ from NADH. Many Clostridium spp. use Stickland metabolism (co-fermentation of pairs of amino acids) to generate ATP and NAD+ . Synthesis of PR is activated by PrdR, a proline-responsive regulatory protein. Here we report that PrdR, in the presence of proline, represses other NAD+ -generating pathways, such as the glycine reductase and succinate-acetyl CoA utilization pathways leading to butyrate production, but does so indirectly by affecting the activity of Rex, a global redox-sensing regulator that responds to the NAD+ /NADH ratio. Our results indicate that PR activity is the favored mechanism for NAD+ regeneration and that both Rex and PrdR influence toxin production. Using the hamster model of C. difficile infection, we revealed the importance of PrdR-regulated Stickland metabolism in the virulence of C. difficile.


Assuntos
Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica , Produtos do Gene rex/genética , NAD/metabolismo , Prolina/metabolismo , Aminoácido Oxirredutases/metabolismo , Animais , Clostridioides difficile/patogenicidade , Feminino , Produtos do Gene rex/antagonistas & inibidores , Mesocricetus , Complexos Multienzimáticos , Oxirredução , Regeneração , Virulência
7.
PLoS Pathog ; 14(3): e1006940, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29529083

RESUMO

Clostridium difficile is the primary cause of nosocomial diarrhea and pseudomembranous colitis. It produces dormant spores, which serve as an infectious vehicle responsible for transmission of the disease and persistence of the organism in the environment. In Bacillus subtilis, the sin locus coding SinR (113 aa) and SinI (57 aa) is responsible for sporulation inhibition. In B. subtilis, SinR mainly acts as a repressor of its target genes to control sporulation, biofilm formation, and autolysis. SinI is an inhibitor of SinR, so their interaction determines whether SinR can inhibit its target gene expression. The C. difficile genome carries two sinR homologs in the operon that we named sinR and sinR', coding for SinR (112 aa) and SinR' (105 aa), respectively. In this study, we constructed and characterized sin locus mutants in two different C. difficile strains R20291 and JIR8094, to decipher the locus's role in C. difficile physiology. Transcriptome analysis of the sinRR' mutants revealed their pleiotropic roles in controlling several pathways including sporulation, toxin production, and motility in C. difficile. Through various genetic and biochemical experiments, we have shown that SinR can regulate transcription of key regulators in these pathways, which includes sigD, spo0A, and codY. We have found that SinR' acts as an antagonist to SinR by blocking its repressor activity. Using a hamster model, we have also demonstrated that the sin locus is needed for successful C. difficile infection. This study reveals the sin locus as a central link that connects the gene regulatory networks of sporulation, toxin production, and motility; three key pathways that are important for C. difficile pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Movimento Celular/fisiologia , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Óperon , Esporos Bacterianos/fisiologia , Sequência de Aminoácidos , Animais , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Ceco/metabolismo , Ceco/microbiologia , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/genética , Infecções por Clostridium/metabolismo , Regulação Bacteriana da Expressão Gênica , Mesocricetus , Camundongos , Coelhos , Regulon , Homologia de Sequência
8.
Nucleic Acids Res ; 46(9): 4733-4751, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29529286

RESUMO

Clostridium difficile, a major human enteropathogen, must cope with foreign DNA invaders and multiple stress factors inside the host. We have recently provided an experimental evidence of defensive function of the C. difficile CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system important for its survival within phage-rich gut communities. Here, we describe the identification of type I toxin-antitoxin (TA) systems with the first functional antisense RNAs in this pathogen. Through the analysis of deep-sequencing data, we demonstrate the general co-localization with CRISPR arrays for the majority of sequenced C. difficile strains. We provide a detailed characterization of the overlapping convergent transcripts for three selected TA pairs. The toxic nature of small membrane proteins is demonstrated by the growth arrest induced by their overexpression. The co-expression of antisense RNA acting as an antitoxin prevented this growth defect. Co-regulation of CRISPR-Cas and type I TA genes by the general stress response Sigma B and biofilm-related factors further suggests a possible link between these systems with a role in recurrent C. difficile infections. Our results provide the first description of genomic links between CRISPR and type I TA systems within defense islands in line with recently emerged concept of functional coupling of immunity and cell dormancy systems in prokaryotes.


Assuntos
Sistemas CRISPR-Cas , Clostridioides difficile/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas Toxina-Antitoxina/genética , Genoma Bacteriano , Genômica , Estabilidade de RNA , RNA Bacteriano/metabolismo
9.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085703

RESUMO

Clostridium difficile is the leading cause of antibiotic-associated diarrhea in adults. During infection, C. difficile must detect the host environment and induce an appropriate survival strategy. Signal transduction networks involving serine/threonine kinases (STKs) play key roles in adaptation, as they regulate numerous physiological processes. PrkC of C. difficile is an STK with two PASTA domains. We showed that PrkC is membrane associated and is found at the septum. We observed that deletion of prkC affects cell morphology with an increase in mean size, cell length heterogeneity, and presence of abnormal septa. A ΔprkC mutant was able to sporulate and germinate but was less motile and formed more biofilm than the wild-type strain. Moreover, a ΔprkC mutant was more sensitive to antimicrobial compounds that target the cell envelope, such as the secondary bile salt deoxycholate, cephalosporins, cationic antimicrobial peptides, and lysozyme. This increased susceptibility was not associated with differences in peptidoglycan or polysaccharide II composition. However, the ΔprkC mutant had less peptidoglycan and released more polysaccharide II into the supernatant. A proteomic analysis showed that the majority of C. difficile proteins associated with the cell wall were less abundant in the ΔprkC mutant than the wild-type strain. Finally, in a hamster model of infection, the ΔprkC mutant had a colonization delay that did not significantly affect overall virulence.


Assuntos
Proteínas de Bactérias/fisiologia , Clostridioides difficile/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Parede Celular/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Cricetinae , Farmacorresistência Bacteriana , Homeostase , Mesocricetus , Testes de Sensibilidade Microbiana , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinases/genética , Virulência
10.
Environ Microbiol ; 21(8): 2852-2870, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31032549

RESUMO

Clostridium difficile is the main cause of antibiotic-associated diarrhoea. Inside the gut, C. difficile must adapt to the stresses it copes with, by inducing protection, detoxification and repair systems that belong to the general stress response involving σB . Following stresses, σB activation requires a PP2C phosphatase to dephosphorylate the anti-anti-sigma factor RsbV that allows its interaction with the anti-sigma factor RsbW and the release of σB . In this work, we studied the signalling pathway responsible for the activation of σB in C. difficile. Contrary to other firmicutes, the expression of sigB in C. difficile is constitutive and not autoregulated. We confirmed the partner switching mechanism that involved RsbV, RsbW and σB . We also showed that CD2685, renamed RsbZ, and its phosphatase activity are required for RsbV dephosphorylation triggering σB activation. While CD0007 and CD0008, whose genes belong to the sigB operon, are not involved in σB activity, depletion of the essential iron-sulphur flavoprotein, CD2684, whose gene forms an operon with rsbZ, prevents σB activation. Finally, we observed that σB is heterogeneously active in a subpopulation of C. difficile cells from the exponential phase, likely leading to a 'bet-hedging' strategy allowing a better chance for the cells to survive adverse conditions.


Assuntos
Clostridioides difficile/metabolismo , Fator sigma/metabolismo , Transdução de Sinais , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Fosfoproteínas Fosfatases/metabolismo
11.
Environ Microbiol ; 21(3): 984-1003, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30556639

RESUMO

The strict anaerobe Clostridium difficile is the most common cause of antibiotic-associated diarrhoea. The oxygen-resistant C. difficile spores play a central role in the infectious cycle, contributing to transmission, infection and recurrence. The spore surface layers, the coat and exosporium, enable the spores to resist physical and chemical stress. However, little is known about the mechanisms of their assembly. In this study, we characterized a new spore protein, CotL, which is required for the assembly of the spore coat. The cotL gene was expressed in the mother cell compartment under the dual control of the RNA polymerase sigma factors, σE and σK . CotL was localized in the spore coat, and the spores of the cotL mutant had a major morphologic defect at the level of the coat/exosporium layers. Therefore, the mutant spores contained a reduced amount of several coat/exosporium proteins and a defect in their localization in sporulating cells. Finally, cotL mutant spores were more sensitive to lysozyme and were impaired in germination, a phenotype likely to be associated with the structurally altered coat. Collectively, these results strongly suggest that CotL is a morphogenetic protein essential for the assembly of the spore coat in C. difficile.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Parede Celular/metabolismo , Clostridioides difficile/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridioides difficile/genética , Muramidase/metabolismo , Fator sigma/metabolismo , Esporos Bacterianos/metabolismo
12.
PLoS Genet ; 12(9): e1006312, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27631621

RESUMO

The strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and proteolytical removal of an inhibitory pro-sequence. Importantly, the rearrangement is restricted to the mother cell because the skinBs recombinase is produced specifically in this cell. In C. difficile, σK lacks a pro-sequence but a skinCd element is present. The product of the skinCd gene CD1231 shares similarity with large serine recombinases. We show that CD1231 is necessary for sporulation and skinCd excision. However, contrary to B. subtilis, expression of CD1231 is observed in vegetative cells and in both sporangial compartments. Nevertheless, we show that skinCd excision is under the control of mother cell regulatory proteins σE and SpoIIID. We then demonstrate that σE and SpoIIID control the expression of the skinCd gene CD1234, and that this gene is required for sporulation and skinCd excision. CD1231 and CD1234 appear to interact and both proteins are required for skinCd excision while only CD1231 is necessary for skinCd integration. Thus, CD1234 is a recombination directionality factor that delays and restricts skinCd excision to the terminal mother cell. Finally, while the skinCd element is not essential for sporulation, deletion of skinCd results in premature activity of σK and in spores with altered surface layers. Thus, skinCd excision is a key element controlling the onset of σK activity and the fidelity of spore development.


Assuntos
Clostridioides difficile/genética , Diarreia/genética , Recombinação Genética , Fator sigma/genética , Esporos Bacterianos/genética , Bacillus subtilis/genética , Ciclo Celular/genética , Clostridioides difficile/patogenicidade , Infecção Hospitalar/genética , Infecção Hospitalar/microbiologia , Diarreia/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Oxigênio/metabolismo , Prófagos/genética , Esporos Bacterianos/crescimento & desenvolvimento
13.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150513

RESUMO

Clostridioides difficile (formerly Clostridium difficile) is a pathogenic bacterium displaying great genetic diversity. A significant proportion of this diversity is due to the presence of integrated prophages. Here, we provide an in-depth analysis of phiCD211, also known as phiCDIF1296T, the largest phage identified in C. difficile so far, with a genome of 131 kbp. It shares morphological and genomic similarity with other large siphophages, like phage 949, infecting Lactococcus lactis, and phage c-st, infecting Clostridium botulinum A PhageTerm analysis indicated the presence of 378-bp direct terminal repeats at the phiCD211 genome termini. Among striking features of phiCD211, the presence of several transposase and integrase genes suggests past recombination events with other mobile genetic elements. Several gene products potentially influence the bacterial lifestyle and fitness, including a putative AcrB/AcrD/AcrF multidrug resistance protein, an EzrA septation ring formation regulator, and a spore protease. We also identified a CRISPR locus and a cas3 gene. We screened 2,584 C. difficile genomes available and detected 149 prophages sharing ≥80% nucleotide identity with phiCD211 (5% prevalence). Overall, phiCD211-like phages were detected in C. difficile strains corresponding to 21 different multilocus sequence type groups, showing their high prevalence. Comparative genomic analyses revealed the existence of several clusters of highly similar phiCD211-like phages. Of note, large chromosome inversions were observed in some members, as well as multiple gene insertions and module exchanges. This highlights the great plasticity and gene coding potential of the phiCD211/phiCDIF1296T genome. Our analyses also suggest active evolution involving recombination with other mobile genetic elements.IMPORTANCEClostridioides difficile is a clinically important pathogen representing a serious threat to human health. Our hypothesis is that genetic differences between strains caused by the presence of integrated prophages could explain the apparent differences observed in the virulence of different C. difficile strains. In this study, we provide a full characterization of phiCD211, also known as phiCDIF1296T, the largest phage known to infect C. difficile so far. Screening 2,584 C. difficile genomes revealed the presence of highly similar phiCD211-like phages in 5% of the strains analyzed, showing their high prevalence. Multiple-genome comparisons suggest that evolution of the phiCD211-like phage community is dynamic, and some members have acquired genes that could influence bacterial biology and fitness. Our study further supports the relevance of studying phages in C. difficile to better understand the epidemiology of this clinically important human pathogen.


Assuntos
Clostridioides difficile/genética , Variação Genética , Genoma Viral/genética , Prófagos/genética , Clostridioides difficile/patogenicidade , Clostridioides difficile/virologia , DNA Viral , Aptidão Genética , Genoma Bacteriano , Genômica/métodos , Humanos , Tipagem de Sequências Multilocus , Prevalência , Análise de Sequência de DNA , Virulência
14.
Electrophoresis ; 39(3): 526-533, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28868639

RESUMO

The success of microfluidic immunocapture based on magnetic beads depends primarily on a sophisticated microscale separation system and on the quality of the magnetic immunosorbent. A microfluidic chip containing a magnetically stabilized fluidized bed (µMSFB), developed for the capture and on-chip amplification of bacteria, was recently described by Pereiro et al.. The present work shows the thorough development of anti-Salmonella magnetic immunosorbents with the optimal capture efficiency and selectivity. Based on the corresponding ISO standards, these parameters have to be high enough to capture even a few cells of bacteria in a proper aliquot of sample, e.g. milk. The selection of specific anti-Salmonella IgG molecules and the conditions for covalent bonding were the key steps in preparing an immunosorbent of the desired quality. The protocol for immunocapturing was first thoroughly optimized and studied in a batchwise arrangement, and then the carrier was integrated into the µMSFB chip. The combination of the unique design of the chip (guaranteeing the collision of cells with magnetic beads) with the advanced immunosorbent led to a Salmonella cell capture efficiency of up to 99%. These high values were achieved repeatedly even in samples of milk differing in fat content. The rate of nonspecific capture of Escherichia coli (i.e. the negative control) was only 2%.


Assuntos
Separação Imunomagnética/métodos , Leite/química , Salmonella/isolamento & purificação , Animais , Escherichia coli/isolamento & purificação , Imunoglobulina G/química , Separação Imunomagnética/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Salmonella/citologia , Salmonella/imunologia
15.
Environ Microbiol ; 19(5): 1933-1958, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28198085

RESUMO

Clostridium difficile is a major cause of diarrhoea associated with antibiotherapy. Exposed to stresses in the gut, C. difficile can survive by inducing protection, detoxification and repair systems. In several firmicutes, most of these systems are controlled by the general stress response involving σB . In this work, we studied the role of σB in the physiopathology of C. difficile. We showed that the survival of the sigB mutant during the stationary phase was reduced. Using a transcriptome analysis, we showed that σB controls the expression of ∼25% of genes including genes involved in sporulation, metabolism, cell surface biogenesis and the management of stresses. By contrast, σB does not control toxin gene expression. In agreement with the up-regulation of sporulation genes, the sporulation efficiency is higher in the sigB mutant than in the wild-type strain. sigB inactivation also led to increased sensitivity to acidification, cationic antimicrobial peptides, nitric oxide and ROS. In addition, we showed for the first time that σB also plays a crucial role in oxygen tolerance in this strict anaerobe. Finally, we demonstrated that the fitness of colonisation by the sigB mutant is greatly affected in a dixenic mouse model of colonisation when compared to the wild-type strain.


Assuntos
Proteínas de Bactérias/genética , Clostridioides difficile/genética , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica/genética , Fator sigma/genética , Animais , Proteínas de Bactérias/metabolismo , Clostridioides difficile/patogenicidade , Reparo do DNA/genética , Diarreia/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Perfilação da Expressão Gênica , Vida Livre de Germes , Camundongos , Camundongos Endogâmicos C3H , Estresse Oxidativo/genética , Fator sigma/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Regulação para Cima , Fatores de Virulência/genética
16.
Nucleic Acids Res ; 43(3): 1456-68, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25578965

RESUMO

The RpoS/σ(S) sigma subunit of RNA polymerase (RNAP) activates transcription of stationary phase genes in many Gram-negative bacteria and controls adaptive functions, including stress resistance, biofilm formation and virulence. In this study, we address an important but poorly understood aspect of σ(S)-dependent control, that of a repressor. Negative regulation by σ(S) has been proposed to result largely from competition between σ(S) and other σ factors for binding to a limited amount of core RNAP (E). To assess whether σ(S) binding to E alone results in significant downregulation of gene expression by other σ factors, we characterized an rpoS mutant of Salmonella enterica serovar Typhimurium producing a σ(S) protein proficient for Eσ(S) complex formation but deficient in promoter DNA binding. Genome expression profiling and physiological assays revealed that this mutant was defective for negative regulation, indicating that gene repression by σ(S) requires its binding to DNA. Although the mechanisms of repression by σ(S) are likely specific to individual genes and environmental conditions, the study of transcription downregulation of the succinate dehydrogenase operon suggests that σ competition at the promoter DNA level plays an important role in gene repression by Eσ(S).


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Fator sigma/metabolismo , Regiões Promotoras Genéticas
17.
Infect Immun ; 84(8): 2389-405, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297391

RESUMO

The pathogenicity of Clostridium difficile is linked to its ability to produce two toxins: TcdA and TcdB. The level of toxin synthesis is influenced by environmental signals, such as phosphotransferase system (PTS) sugars, biotin, and amino acids, especially cysteine. To understand the molecular mechanisms of cysteine-dependent repression of toxin production, we reconstructed the sulfur metabolism pathways of C. difficile strain 630 in silico and validated some of them by testing C. difficile growth in the presence of various sulfur sources. High levels of sulfide and pyruvate were produced in the presence of 10 mM cysteine, indicating that cysteine is actively catabolized by cysteine desulfhydrases. Using a transcriptomic approach, we analyzed cysteine-dependent control of gene expression and showed that cysteine modulates the expression of genes involved in cysteine metabolism, amino acid biosynthesis, fermentation, energy metabolism, iron acquisition, and the stress response. Additionally, a sigma factor (SigL) and global regulators (CcpA, CodY, and Fur) were tested to elucidate their roles in the cysteine-dependent regulation of toxin production. Among these regulators, only sigL inactivation resulted in the derepression of toxin gene expression in the presence of cysteine. Interestingly, the sigL mutant produced less pyruvate and H2S than the wild-type strain. Unlike cysteine, the addition of 10 mM pyruvate to the medium for a short time during the growth of the wild-type and sigL mutant strains reduced expression of the toxin genes, indicating that cysteine-dependent repression of toxin production is mainly due to the accumulation of cysteine by-products during growth. Finally, we showed that the effect of pyruvate on toxin gene expression is mediated at least in part by the two-component system CD2602-CD2601.


Assuntos
Clostridioides difficile/fisiologia , Cisteína/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Aminoácidos/metabolismo , Animais , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Linhagem Celular , Chlorocebus aethiops , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Espaço Intracelular/metabolismo , Redes e Vias Metabólicas , Ácido Pirúvico/metabolismo , Células Vero
18.
PLoS Genet ; 9(10): e1003756, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098137

RESUMO

Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σ(F) and σ(G) in the forespore and σ(E) and σ(K) in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σ(F), σ(E), σ(G) and σ(K) regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σ(F) regulon, 97 σ(E)-dependent genes, 50 σ(G)-governed genes and 56 genes under σ(K) control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σ(E) or σ(K) control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σ(E) regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σ(E) regulon in the mother cell was not strictly under the control of σ(F) despite the fact that the forespore product SpoIIR was required for the processing of pro-σ(E). In addition, the σ(K) regulon was not controlled by σ(G) in C. difficile in agreement with the lack of pro-σ(K) processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes.


Assuntos
Bacillus subtilis/genética , Clostridioides difficile/genética , Evolução Molecular , Fator sigma/genética , Esporos Bacterianos/crescimento & desenvolvimento , Transcrição Gênica , Bacillus subtilis/patogenicidade , Diferenciação Celular , Clostridioides difficile/patogenicidade , Diarreia/genética , Diarreia/microbiologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fator sigma/metabolismo , Esporos Bacterianos/genética
19.
PLoS Genet ; 9(10): e1003782, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098139

RESUMO

Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F) in the forespore, and σ(E) in the mother cell control early stages of development and are replaced, at later stages, by σ(G) and σ(K), respectively. Starting with σ(F), the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E) is partially independent of σ(F), that σ(G) activity is not dependent on σ(E), and that the activity of σ(K) does not require σ(G). We also show that σ(K) is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F)-to-σ(E), σ(E)-to-σ(G), and σ(G)-to-σ(K) cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.


Assuntos
Diferenciação Celular/genética , Clostridioides difficile/genética , Evolução Molecular , Fator sigma/genética , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , RNA Polimerases Dirigidas por DNA/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Mutação , Fator sigma/metabolismo , Transcrição Gênica
20.
PLoS Genet ; 9(5): e1003493, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23675309

RESUMO

Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA-seq and differential 5'-end RNA-seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA-based regulation of gene expression in this emergent enteropathogen.


Assuntos
Clostridioides difficile/genética , Pequeno RNA não Traduzido/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Riboswitch/genética , Clostridioides difficile/patogenicidade , Simulação por Computador , DNA Intergênico , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , RNA Antissenso/genética , Pequeno RNA não Traduzido/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA