Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(3): e0162923, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38335112

RESUMO

We used quantitative microbial risk assessment to estimate ingestion risk for intI1, erm(B), sul1, tet(A), tet(W), and tet(X) in private wells contaminated by human and/or livestock feces. Genes were quantified with five human-specific and six bovine-specific microbial source-tracking (MST) markers in 138 well-water samples from a rural Wisconsin county. Daily ingestion risk (probability of swallowing ≥1 gene) was based on daily water consumption and a Poisson exposure model. Calculations were stratified by MST source and soil depth over the aquifer where wells were drilled. Relative ingestion risk was estimated using wells with no MST detections and >6.1 m soil depth as a referent category. Daily ingestion risk varied from 0 to 8.8 × 10-1 by gene and fecal source (i.e., human or bovine). The estimated number of residents ingesting target genes from private wells varied from 910 (tet(A)) to 1,500 (intI1 and tet(X)) per day out of 12,000 total. Relative risk of tet(A) ingestion was significantly higher in wells with MST markers detected, including wells with ≤6.1 m soil depth contaminated by bovine markers (2.2 [90% CI: 1.1-4.7]), wells with >6.1 m soil depth contaminated by bovine markers (1.8 [1.002-3.9]), and wells with ≤6.1 m soil depth contaminated by bovine and human markers simultaneously (3.1 [1.7-6.5]). Antibiotic resistance genes (ARGs) were not necessarily present in viable microorganisms, and ingestion is not directly associated with infection. However, results illustrate relative contributions of human and livestock fecal sources to ARG exposure and highlight rural groundwater as a significant point of exposure.IMPORTANCEAntibiotic resistance is a global public health challenge with well-known environmental dimensions, but quantitative analyses of the roles played by various natural environments in transmission of antibiotic resistance are lacking, particularly for drinking water. This study assesses risk of ingestion for several antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in drinking water from private wells in a rural area of northeast Wisconsin, United States. Results allow comparison of drinking water as an exposure route for antibiotic resistance relative to other routes like food and recreational water. They also enable a comparison of the importance of human versus livestock fecal sources in the study area. Our study demonstrates the previously unrecognized importance of untreated rural drinking water as an exposure route for antibiotic resistance and identifies bovine fecal material as an important exposure factor in the study setting.


Assuntos
Antibacterianos , Água Potável , Animais , Humanos , Bovinos , Antibacterianos/farmacologia , Genes Bacterianos , Gado , Fezes , Solo , Medição de Risco , Resistência Microbiana a Medicamentos/genética , Ingestão de Alimentos
2.
Appl Environ Microbiol ; : e0087624, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158272

RESUMO

The horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system clustered regularly interspaced short palindromic repeats (CRISPR)-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agricultural Enterococcus faecalis strains and its antiplasmid efficacy in an agricultural niche: manure. Analyzing 1,986 E. faecalis genomes from human and animal hosts, we show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agricultural E. faecalis strains. Using plasmid conjugation assays, we found that CRISPR-Cas is a significant barrier against resistance plasmid transfer in manure. Finally, we used a CRISPR-based antimicrobial approach to cure resistant E. faecalis of erythromycin resistance, but this was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show that E. faecalis CRISPR-Cas is prevalent and effective in an agricultural setting and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a One Health approach.IMPORTANCEAntibiotic resistance is a growing global health crisis in human and veterinary medicine. Previous work has shown technologies based on CRISPR-Cas-a bacterial defense system-to be effective in tackling antibiotic resistance. Here we test if CRISPR-Cas is present and effective in agricultural niches, specifically in the ubiquitously present bacterium, Enterococcus faecalis. We show that CRISPR-Cas is both prevalent and functional in manure and has the potential to be used to specifically kill bacteria carrying antibiotic resistance genes. This study demonstrates the utility of CRISPR-Cas-based strategies for control of antibiotic resistance in agricultural settings.

3.
Foodborne Pathog Dis ; 18(11): 771-777, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242513

RESUMO

Environmental survival time is important when evaluating adverse health outcomes from foodborne pathogens. Although outbreaks associated with manure-impacted irrigation or runoff water are relatively infrequent, their broad scope, regulatory importance, and severe health outcomes highlight the need to better understand the environmental survival of manure-borne pathogens. Shiga toxigenic Escherichia coli (STEC) are excreted in feces and persist in the environment until they die or recolonize a new host. Surface waters contaminated with manure-borne STEC can infect humans through drinking and recreational water use or irrigated crops that are minimally cooked. In this study, manure-impacted water microcosms mimicking beef cattle feedlot runoff were used to assess survival of STEC strains representing seven STEC serotypes (O26, O45, O103, O111, O121, O145, and O157) and persistence of target O antigen genes. Microcosms were sampled over the course of 1 year, and the entire experiment was repeated in a second year. Culture and polymerase chain reaction (PCR)-based techniques were used for detection and enumeration. Serotype-specific survival results were observed. Both STEC O26 and O45 declined slowly and remained culturable at 24 months. In contrast, STEC O121 and O145 decreased rapidly (-0.84 and -1.99 log10 abundance per month, respectively) and were unculturable by months 4 and 5, but detectable by PCR for a mean of 4.5 and 8.3 months, respectively. STEC O103, O111, and O157 remained culturable for a mean of 11.6, 5.5, and 15 months and detectable by PCR for a mean of 12, 13.8, and 18.6 months after inoculation, respectively. Results document that some STEC serotypes have the biological potential to survive in manure-impacted waters for extended periods of time when competing microflora are eliminated. Serotype-specific differences in survival of target bacteria and persistence of target genes were observed in this sample set, with STEC O26 and O45 strains appearing the most robust in these microcosm studies.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Bovinos , Proteínas de Escherichia coli/genética , Fezes , Antígenos O , Sorogrupo , Escherichia coli Shiga Toxigênica/genética
4.
Bull Environ Contam Toxicol ; 103(6): 808-813, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31602500

RESUMO

Certain microbes can biotransform antibiotics. Little is known about these microbes or the biotransformation processes. The objective of this study was to determine the effects of background nutrient conditions on a sulfonamide degrading culture and on its biotransformation of sulfadiazine (SDZ) with respect to transformation kinetics and transformation products. The mixed culture capable of degrading SDZ consisted primarily of three genera, Brevibacterium, Castellaniella and Leucobacter. The maximum biotransformation rate was 4.55 mg L-1 d-1 in the absence of background nutrients. Among the three background nutrient conditions tested, diluted R2A medium lead to the highest maximum SDZ biotransformation rates, followed by humic acid and glucose. 2-aminopyrimidine was the major SDZ biotransformation product under the background nutrient conditions tested, while another previously reported biotransformation product, sulfanilic acid, was further degraded by the mixed culture. The findings from this study can help improve our estimation of the fate of antibiotics in the environment.


Assuntos
Antibacterianos/metabolismo , Meios de Cultura/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sulfadiazina/metabolismo , Actinobacteria/metabolismo , Alcaligenaceae/metabolismo , Biodegradação Ambiental , Biotransformação , Brevibacterium/metabolismo , Glucose/química , Substâncias Húmicas/análise , Cinética , Pirimidinas/química
7.
J Environ Qual ; 46(1): 169-176, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28177398

RESUMO

Runoff from open-lot animal feeding areas contains microorganisms that may adversely affect human and animal health if not properly managed. One alternative to full manure containment systems is a vegetative treatment system (VTS) that collects runoff in a sediment basin and then applies it to a perennial vegetation (grass) treatment area that is harvested for hay. Little is known regarding the efficacy of large-scale commercial VTSs for the removal of microbial contaminants. In this study, an active, pump-based VTS designed and built for a 1200-head beef cattle feedlot operation was examined to determine the effects of repeated feedlot runoff application on fecal indicator microorganisms and pathogens over short-term (2 wk) and long-term (3 yr) operations and whether fecal bacteria were infiltrating into deeper soils within the treatment area. In a short-term study, fecal bacteria and pathogen numbers declined over time in soil. Measurements of total coliforms and Enterococcus counts taken on control soils were not effective as fecal indicators. The repeated application of manure-impacted runoff as irrigation water did not enrich the pathogens or fecal indicators in the soil, and no evidence was seen to indicate that pathogens were moving into the deeper soil at this site. These results indicate that large-scale, active VTSs reduce the potential for environmental contamination by manure-associated bacteria. Also, this study has implications to full-containment systems that apply runoff water to land application areas (cropland) and the fate of pathogens in the soils of land application sites.


Assuntos
Enterobacteriaceae/isolamento & purificação , Enterococcus/isolamento & purificação , Fezes/microbiologia , Esterco , Animais , Bovinos , Carne Vermelha , Solo , Poluentes do Solo
8.
J Environ Qual ; 45(2): 432-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065389

RESUMO

Various culture-based methodologies are used in assessment of antibiotic resistance in samples collected in agroecosystems. Culture-based methods commonly involve isolating target bacteria on general or selective media and assessing growth in response to specific concentrations of antibiotics. The advantages of culture-based methods are multifold. In particular, isolation of bacteria is key to understanding phenotypic characteristics of isolates and their resistance patterns, and most national and international antibiotic resistance monitoring projects are isolate based. This review covers current knowledge of bacterial groups and antibiotics commonly targeted in resistance studies using bacterial culture and discusses the range in methods used, data interpretation, and factors supporting and confounding the use of culture-based methods in assessment of antibiotic resistance. Gaps in knowledge related to study design and resistance databases are discussed. Finally, a case is made for the integration of culture-based and molecular methods to better inform our understanding of antibiotic resistance in agroecosystems.


Assuntos
Agricultura , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Ecossistema , Bactérias , Testes de Sensibilidade Microbiana
9.
J Environ Qual ; 45(2): 420-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065388

RESUMO

Although historically, antibiotic resistance has occurred naturally in environmental bacteria, many questions remain regarding the specifics of how humans and animals contribute to the development and spread of antibiotic resistance in agroecosystems. Additional research is necessary to completely understand the potential risks to human, animal, and ecological health in systems altered by antibiotic-resistance-related contamination. At present, analyzing and interpreting the effects of human and animal inputs on antibiotic resistance in agroecosystems is difficult, since standard research terminology and protocols do not exist for studying background and baseline levels of resistance in the environment. To improve the state of science in antibiotic-resistance-related research in agroecosystems, researchers are encouraged to incorporate baseline data within the study system and background data from outside the study system to normalize the study data and determine the potential impact of antibiotic-resistance-related determinants on a specific agroecosystem. Therefore, the aims of this review were to (i) present standard definitions for commonly used terms in environmental antibiotic resistance research and (ii) illustrate the need for research standards (normalization) within and between studies of antibiotic resistance in agroecosystems. To foster synergy among antibiotic resistance researchers, a new surveillance and decision-making tool is proposed to assist researchers in determining the most relevant and important antibiotic-resistance-related targets to focus on in their given agroecosystems. Incorporation of these components within antibiotic-resistance-related studies should allow for a more comprehensive and accurate picture of the current and future states of antibiotic resistance in the environment.


Assuntos
Agricultura , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Ecossistema , Animais , Bactérias , Ecologia , Humanos , Pesquisa
10.
J Environ Qual ; 45(2): 454-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065391

RESUMO

The inherent spatial heterogeneity and complexity of antibiotic-resistant bacteria and antibiotic resistance (AR) genes in manure-affected soils makes it difficult to sort out resistance that can be attributed to human antibiotic use from resistance that occurs naturally in the soil. This study characterizes native Nebraska prairie soils that have not been affected by human or food-animal waste products to provide data on background levels of resistance in southeastern Nebraskan soils. Soil samples were collected from 20 sites enumerated on tetracycline and cefotaxime media; screened for tetracycline-, sulfonamide-, ß-lactamase-, and macrolide-resistance genes; and characterized for soil physical and chemical parameters. All prairies contained tetracycline- and cefotaxime-resistant bacteria, and 48% of isolates collected were resistant to two or more antibiotics. Most (98%) of the soil samples and all 20 prairies had at least one tetracycline gene. Most frequently detected were (D), (A) (O), (L), and (B). Sulfonamide genes, which are considered a marker of human or animal activity, were detected in 91% of the samples, despite the lack of human inputs at these sites. No correlations were found between either phenotypic or genotypic resistance and soil physical or chemical parameters. Heterogeneity was observed in AR within and between prairies. Therefore, multiple samples are necessary to overcome heterogeneity and to accurately assess AR. Conclusions regarding AR depend on the gene target measured. To determine the impacts of food-animal antibiotic use on resistance, it is essential that background and/or baseline levels be considered, and where appropriate subtracted out, when evaluating AR in agroecosystems.


Assuntos
Resistência Microbiana a Medicamentos , Pradaria , Esterco , Microbiologia do Solo , Animais , Antibacterianos , Cefotaxima/farmacologia , Genes Bacterianos , Nebraska , Solo , Resistência a Tetraciclina
11.
J Environ Qual ; 45(2): 394-406, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065386

RESUMO

We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly summarized, and key knowledge gaps are highlighted. A lack of quantitative estimates of human exposure to environmental bacteria, in general, and antibiotic-resistant bacteria, specifically, is a significant data gap hindering the assessment of effects on human health. The contribution of horizontal gene transfer to resistance in the environment and conditions that might foster the horizontal transfer of antibiotic resistance genes into human pathogens also need further research. Existing research has focused heavily on human health effects, with relatively little known about the effects of antibiotics and antibiotic resistance on natural and agricultural ecosystems. The proposed causal model is used to elucidate gaps in knowledge that must be addressed by the research community and may provide a useful starting point for the design and analysis of future research efforts.


Assuntos
Antibacterianos , Resistência Microbiana a Medicamentos , Ecossistema , Agricultura , Bactérias , Humanos
12.
J Environ Qual ; 45(2): 377-93, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065385

RESUMO

The presence of antibiotic drug residues, antibiotic resistant bacteria, and antibiotic resistance genes in agroecosystems has become a significant area of research in recent years and is a growing public health concern. While antibiotics are used in both human medicine and agricultural practices, the majority of their use occurs in animal production where historically they have been used for growth promotion, in addition to the prevention and treatment of disease. The widespread use of antibiotics and the application of animal wastes to agricultural lands play major roles in the introduction of antibiotic-related contamination into the environment. Overt toxicity in organisms directly exposed to antibiotics in agroecosystems is typically not a major concern because environmental concentrations are generally lower than therapeutic doses. However, the impacts of introducing antibiotic contaminants into the environment are unknown, and concerns have been raised about the health of humans, animals, and ecosystems. Despite increased research focused on the occurrence and fate of antibiotics and antibiotic resistance over the past decade, standard methods and practices for analyzing environmental samples are limited and future research needs are becoming evident. To highlight and address these issues in detail, this special collection of papers was developed with a framework of five core review papers that address the (i) overall state of science of antibiotics and antibiotic resistance in agroecosystems using a causal model, (ii) chemical analysis of antibiotics found in the environment, (iii) need for background and baseline data for studies of antibiotic resistance in agroecosystems with a decision-making tool to assist in designing research studies, as well as (iv) culture- and (v) molecular-based methods for analyzing antibiotic resistance in the environment. With a focus on the core review papers, this introduction summarizes the current state of science for analyzing antibiotics and antibiotic resistance in agroecosystems, discusses current knowledge gaps, and develops future research priorities. This introduction also contains a glossary of terms used in the core reivew papers of this special section. The purpose of the glossary is to provide a common terminology that clearly characterizes the concepts shared throughout the narratives of each review paper.


Assuntos
Agricultura , Antibacterianos , Animais , Bactérias , Ecossistema , Humanos
13.
J Environ Qual ; 53(3): 300-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576271

RESUMO

Given the high cost and non-renewability of mineral-based fertilizers, there is increasing interest in the innovative use of manure-based materials, such as poultry litter (PL). However, manure-based fertilizers add both nutrients and microbes to the soil, including antibiotic-resistant Escherichia coli (AREc). PL soil amendment impact on AREc in corn fields was evaluated in a randomized field experiment (May-October 2017). Two winter cropping systems (fallow and cover crop) were assigned to whole plots, with three spring-applied fertilizer treatments (untreated control [UC], PL, and commercial fertilizer [CF]) assigned to subplots. Soil was collected from 0 to 15 cm on days 0, 7, 28, 70, 98, and 172 post-treatment applications. Samples were cultured for the enumeration and prevalence of generic, tetracycline-resistant (TETr), third-generation cephalosporin-resistant (3GCr) E. coli isolates, and extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. PL soil amendment significantly (p < 0.05) increased the levels of generic E. coli, TETr E. coli, and 3GCr E. coli on days 7 and 28 compared to UC or CF. Beyond day 28, AREc did not significantly (p > 0.05) differ by fertilizer treatment and returned to baseline on day 70. ESBL-producing Enterobacteriaceae were detected from 16 samples, mostly on day 70. Cover crop significantly decreased TETr E. coli concentration on day 28, with no significant effects on the prevalence of 3GCr E. coli and ESBL-producing Enterobacteriaceae compared to no cover crop. All ESBL-producing Enterobacteriaceae and 79% of the 3GCr E. coli isolates were positive for blaCTX-M gene by polymerase chain reaction. Results show that PL soil amendment transiently increases the levels of AREc compared to mineral fertilizer.


Assuntos
Escherichia coli , Fertilizantes , Esterco , Aves Domésticas , Microbiologia do Solo , Solo , Escherichia coli/efeitos dos fármacos , Animais , Fertilizantes/análise , Esterco/análise , Solo/química , Antibacterianos/farmacologia , Antibacterianos/análise , Farmacorresistência Bacteriana , Agricultura/métodos
14.
Sci Total Environ ; 927: 172190, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575025

RESUMO

Identification of methods for the standardized assessment of bacterial pathogens and antimicrobial resistance (AMR) in environmental water can improve the quality of monitoring and data collected, support global surveillance efforts, and enhance the understanding of environmental water sources. We conducted a systematic review to assemble and synthesize available literature that identified methods for assessment of prevalence and abundance of bacterial fecal indicators and pathogens in water for the purposes of monitoring bacterial pathogens and AMR. After screening for quality, 175 unique publications were identified from 15 databases, and data were extracted for analysis. This review identifies the most common and robust methods, and media used to isolate target organisms from surface water sources, summarizes methodological trends, and recognizes knowledge gaps. The information presented in this review will be useful when establishing standardized methods for monitoring bacterial pathogens and AMR in water in the United States and globally.


Assuntos
Enterococcus , Monitoramento Ambiental , Escherichia coli , Salmonella , Microbiologia da Água , Enterococcus/isolamento & purificação , Salmonella/isolamento & purificação , Monitoramento Ambiental/métodos , Escherichia coli/isolamento & purificação
15.
Artigo em Inglês | MEDLINE | ID: mdl-38858856

RESUMO

AIMS: In October 2023, the Tennessee Department of Health identified an outbreak of Shiga toxin-producing Escherichia coli (STEC) O157:H7 infections among elementary school students who attended school field trips to the same farm animal exhibit. Our aim was to determine STEC source and prevent additional illnesses by initiating epidemiologic, laboratory and environmental investigations. METHODS AND RESULTS: We identified cases using laboratory-based surveillance and by surveying caregivers of children who attended the exhibit. Probable cases were defined as illness with abdominal cramps or diarrhoea after attendance; confirmed cases were laboratory-confirmed STEC infection in an attendee or household contact. A site visit was conducted, and event organizers were interviewed. Human stool, animal faeces and environmental samples were tested for STEC O157:H7 by real-time polymerase chain reaction (PCR), culture and whole-genome sequencing (WGS). Approximately 2300 elementary school students attended the animal exhibit during 2 days. Field trip activities included contact with different farm animal species, drinking pasteurized milk outside animal enclosures and eating lunch in a separate building onsite. We received survey responses from 399 caregivers for 443 (19%) animal exhibit attendees. We identified 9 confirmed and 55 probable cases with illness onset dates during 26 September to 12 October. Seven children aged 1-7 years were hospitalized. Four children aged 1-6 years experienced haemolytic uraemic syndrome; none died. Laboratory testing identified STEC O157:H7 by culture from eight human stool samples with 0-1 allele difference by WGS. Three environmental samples had Shiga toxin (stx 2) genes detected by PCR, but no STEC isolates were recovered by culture. CONCLUSIONS: This is the largest reported STEC O157:H7 outbreak associated with an animal exhibit in Tennessee. We identified opportunities for educating school staff, event organizers and families about zoonotic disease risks associated with animal contact and published prevention measures.

16.
Front Water ; 62024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38855419

RESUMO

Antimicrobial resistance (AMR) is a world-wide public health threat that is projected to lead to 10 million annual deaths globally by 2050. The AMR public health issue has led to the development of action plans to combat AMR, including improved antimicrobial stewardship, development of new antimicrobials, and advanced monitoring. The National Antimicrobial Resistance Monitoring System (NARMS) led by the United States (U.S) Food and Drug Administration along with the U.S. Centers for Disease Control and U.S. Department of Agriculture has monitored antimicrobial resistant bacteria in retail meats, humans, and food animals since the mid 1990's. NARMS is currently exploring an integrated One Health monitoring model recognizing that human, animal, plant, and environmental systems are linked to public health. Since 2020, the U.S. Environmental Protection Agency has led an interagency NARMS environmental working group (EWG) to implement a surface water AMR monitoring program (SWAM) at watershed and national scales. The NARMS EWG divided the development of the environmental monitoring effort into five areas: (i) defining objectives and questions, (ii) designing study/sampling design, (iii) selecting AMR indicators, (iv) establishing analytical methods, and (v) developing data management/analytics/metadata plans. For each of these areas, the consensus among the scientific community and literature was reviewed and carefully considered prior to the development of this environmental monitoring program. The data produced from the SWAM effort will help develop robust surface water monitoring programs with the goal of assessing public health risks associated with AMR pathogens in surface water (e.g., recreational water exposures), provide a comprehensive picture of how resistant strains are related spatially and temporally within a watershed, and help assess how anthropogenic drivers and intervention strategies impact the transmission of AMR within human, animal, and environmental systems.

17.
J Environ Qual ; 42(5): 1295-307, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24216409

RESUMO

Since the time of the first microbe hunters, primary culture and isolation of bacteria has been a foundation of microbiology. Like other microbial methods, bacterial culture and isolation methodologies continue to develop. Although fundamental concepts like selection and enrichment are as relevant today as they were over 100 yr ago, advances in chemistry, molecular biology and bacterial ecology mean that today's culture and isolation techniques serve additional supporting roles. The primary isolation of Shiga toxigenic (STEC) from environmental sources relies on enriching the target while excluding extensive background flora. Due to the complexity of environmental substrates, no single method can be recommended; however, common themes are discussed. Brilliant Green Bile Broth, with or without antibiotics, is one of many broths used successfully for selective STEC enrichment. Stressed cells may require a pre-enrichment recovery step in a nonselective broth such as buffered peptone water. After enrichment, immunomagnetic separation with serotype specific beads drastically increases the chances for recovery of STEC from environmental or insect sources. Some evidence suggests that acid treating the recovered beads can further enhance isolation. Although it is common in human clinical, food safety, and water quality applications to plate the recovered beads on Sorbitol MacConkey Agar, other chromogenic media, such as modified CHROMagar, have proven helpful in field and outbreak applications, allowing the target to be distinguished from the numerous background flora. Optimum conditions for each sample and target must be determined empirically, highlighting the need for a better understanding of STEC ecology.


Assuntos
Meios de Cultura , Escherichia coli Shiga Toxigênica , Microbiologia de Alimentos , Humanos , Separação Imunomagnética
18.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808752

RESUMO

The horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system CRISPR-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agricultural Enterococcus faecalis strains and its anti-plasmid efficacy in an agricultural niche - manure. We show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agricultural E. faecalis strains. CRISPR-Cas was found to be an effective barrier against resistance plasmid transfer in manure, with improved effect as time progressed. CRISPR-based antimicrobials to cure resistant E. faecalis of erythromycin resistance was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show that E. faecalis CRISPR-Cas is prevalent and effective in an agricultural setting, and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a OneHealth approach.

19.
J Environ Qual ; 52(2): 270-286, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36479898

RESUMO

Antimicrobial resistance is a growing public health problem that requires an integrated approach among human, agricultural, and environmental sectors. However, few studies address all three components simultaneously. We investigated the occurrence of five antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in private wells drawing water from a vulnerable aquifer influenced by residential septic systems and land-applied dairy manure. Samples (n = 138) were collected across four seasons from a randomized sample of private wells in Kewaunee County, Wisconsin. Measurements of ARGs and intI1 were related to microbial source tracking (MST) markers specific to human and bovine feces; they were also related to 54 risk factors for contamination representing land use, rainfall, hydrogeology, and well construction. ARGs and intI1 occurred in 5%-40% of samples depending on target. Detection frequencies for ARGs and intI1 were lowest in the absence of human and bovine MST markers (1%-30%), highest when co-occurring with human and bovine markers together (11%-78%), and intermediate when co-occurring with just one type of MST marker (4%-46%). Gene targets were associated with septic system density more often than agricultural land, potentially because of the variable presence of manure on the landscape. Determining ARG prevalence in a rural setting with mixed land use allowed an assessment of the relative contribution of human and bovine fecal sources. Because fecal sources co-occurred with ARGs at similar rates, interventions intended to reduce ARG occurrence may be most effective if both sources are considered.


Assuntos
Antibacterianos , Esterco , Animais , Humanos , Bovinos , Antibacterianos/farmacologia , Gado , Fezes , Resistência Microbiana a Medicamentos/genética
20.
Sci Total Environ ; 905: 167189, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748604

RESUMO

Developing effective and sensitive detection methods for antimicrobial resistant Salmonella enterica from surface water is a goal of the National Antimicrobial Resistance Monitoring System (NARMS). There are no specified methods for recovery of S. enterica in surface waters in the U.S. A multi-laboratory evaluation of four methods - bulk water enrichment (BW), vertical Modified Moore Swab (VMMS), modified Standard Method 9260.B2 (SM), and dead-end ultrafiltration (DEUF) - was undertaken to recover S. enterica from surface water. In Phase 1, one-liter volumes of water were collected from the same site on five different dates. Water was shipped and analyzed at four different laboratory locations (A, B, C, and D) for recovery of 1) inoculated fluorescent S. Typhimurium strain (ca. 30 CFU/L) and 2) Salmonella present in the water sampled. At each location, BW, VMMS, or SM recovery was performed on five separate 1 L water samples. Twenty 1 L water samples were subjected to each recovery method, and overall, sixty 1 L samples were assayed for Salmonella. Inoculated, fluorescent Salmonella Typhimurium and environmental Salmonella spp. were recovered from 65 % (39/60) and 45 % (27/60) of water samples, respectively. BW, VMMS, and SM recovered fluorescent S. Typhimurium from 60 %, 60 %, and 75 % of inoculated samples, respectively. Analysis by Chi-squared test determined laboratory location had a significant (p < 0.05) effect on fluorescent S. Typhimurium recovery compared to method or date of water collection. In Phase 2, recovery of inoculated fluorescent S. Typhimurium from 1 L samples by SM and DEUF was compared at laboratory locations B and D. SM and DEUF recovered fluorescent S. Typhimurium from 100 % (20/20) and 95 % (19/20) of inoculated water samples, respectively; laboratory location (p > 0.05) did not affect Salmonella recovery. Uniform laboratory methodology and training should be prioritized in conducting Salmonella recovery from surface water in laboratories.


Assuntos
Salmonella enterica , Antibacterianos/farmacologia , Laboratórios , Farmacorresistência Bacteriana , Salmonella typhimurium , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA