Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pept Sci ; : e3597, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523558

RESUMO

The recently developed mRNA-based coronavirus SARS-CoV-2 vaccines highlighted the great therapeutic potential of the mRNA technology. Although the lipid nanoparticles used for the delivery of the mRNA are very efficient, they showed, in some cases, the induction of side effects as well as the production of antibodies directed against particle components. Thus, the development of alternative delivery systems is of great interest in the pursuit of more effective mRNA treatments. In the present work, we evaluated the mRNA transfection capacities of a series of cationic histidine-rich amphipathic peptides derived from LAH4. We found that while the LAH4-A1 peptide was an efficient carrier for mRNA, its activity was highly serum sensitive. Interestingly, modification of this cell penetrating peptide at the N-terminus with two tyrosines or with salicylic acid allowed to confer serum resistance to the carrier.

2.
J Gene Med ; 24(3): e3401, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34856643

RESUMO

BACKGROUND: Delivery systems, including peptide-based ones, that destabilize endosomes in a pH-dependent manner are increasingly used to deliver cargoes of therapeutic interest, such as nucleic acids and proteins into mammalian cells. METHODS: The negatively charged amphipathic alpha-helicoidal forming peptide named HELP (Helical Erythrocyte Lysing Peptide) is a derivative from the bee venom melittin and was shown to have a pH-dependent activity with the highest lytic activity at pH 5.0 at the same time as becoming inactive when the pH is increased. The present study aimed to determine whether replacement in the HELP peptide of the glutamic acid residues by histidines, for which the protonation state is sensitive to the pH changes that occur during endosomal acidification, can transform this fusogenic peptide into a carrier able to deliver different nucleic acids into mammalian cells. RESULTS: The resulting HELP-4H peptide displays high plasmid DNA, small interfering RNA and mRNA delivery capabilities. Importantly, in contrast to other cationic peptides, its transfection activity was only marginally affected by the presence of serum. Using circular dichroism, we found that acidic pH did not induce significant conformational changes for HELP-4H. CONCLUSIONS: In summary, we were able to develop a new cationic histidine rich peptide able to efficiently deliver various nucleic acids into cells.


Assuntos
Peptídeos Penetradores de Células , Animais , Cátions , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , DNA/genética , Histidina/genética , Concentração de Íons de Hidrogênio , Mamíferos/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Transfecção
3.
Macromol Biosci ; 24(6): e2300492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38414380

RESUMO

The physiological problem of chronic inflammation and its associated pathologies attract ongoing attention with regard to methods for their control. Current systemic pharmacological treatments present problematic side effects. Thus, the possibility of new anti-inflammatory compounds with differing mechanisms of action or biophysical properties is enticing. Cationic polymers, with their ability to act as carriers for other molecules or to form bio-compatible materials, present one such possibility. Although not well described, several polycations such as chitosan and polyarginine, have displayed anti-inflammatory properties. The present work shows the ubiquitous laboratory transfection reagent, polyethylenimine (PEI) and more specifically low molecular weight branched PEI (B-PEI) as also possessing such properties. Using a RAW264.7 murine cell line macrophage as an inflammation model, it is found the B-PEI 700 Da as being capable of reducing the production of several pro-inflammatory molecules induced by the endotoxin lipopolysaccharide. Although further studies are required for elucidation of its mechanisms, the revelation that such a common lab reagent may present these effects has wide-ranging implications, as well as an abundance of possibilities.


Assuntos
Lipopolissacarídeos , Macrófagos , Polietilenoimina , Animais , Polietilenoimina/química , Polietilenoimina/farmacologia , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lipopolissacarídeos/farmacologia , Células RAW 264.7 , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Biomarcadores/metabolismo , Linhagem Celular
4.
J Funct Biomater ; 14(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36662064

RESUMO

Cationic polymers such as polyethylenimine (PEI) have found a pervasive place in laboratories across the world as gene delivery agents. However, their applications are not limited to this role, having found a place as delivery agents for drugs, in complexes known as polymer-drug conjugates (PDCs). Yet a potentially underexplored domain of research is in their inherent potential as anti-cancer therapeutic agents, which has been indicated by several studies. Even more interesting is the recent observation that certain polycations may present a significantly greater toxicity towards the clinically important cancer stem cell (CSC) niche than towards more differentiated bulk tumour cells. These cells, which possess the stem-like characteristics of self-renewal and differentiation, are highly implicated in cancer drug resistance, tumour recurrence and poor clinical prognosis. The search for compounds which may target and eliminate these cells is thus of great research interest. As such, the observation in our previous study on a PEI-based PDC which showed a considerably higher toxicity of PEI towards glioblastoma CSCs (GSCs) than on more differentiated glioma (U87) cells led us to investigate other cationic polymers for a similar effect. The evaluation of the toxicity of a range of different types of polycations, and an investigation into the potential source of GSC's sensitivity to such compounds is thus described.

5.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291841

RESUMO

The difficulty involved in the treatment of many tumours due to their recurrence and resistance to chemotherapy is tightly linked to the presence of cancer stem cells (CSCs). This CSC sub-population is distinct from the majority of cancer cells of the tumour bulk. Indeed, CSCs have increased mitochondrial mass that has been linked to increased sensitivity to mitochondrial targeting compounds. Thus, a platinum-based polyethylenimine (PEI) polymer-drug conjugate (PDC) was assessed as a potential anti-CSC therapeutic since it has previously displayed mitochondrial accumulation. Our results show that CSCs have increased specific sensitivity to the PEI carrier and to the PDC. The mechanism of cell death seems to be necrotic in nature, with an absence of apoptotic markers. Cell death is accompanied by the induction of a protective autophagy. The interference in the balance of this pathway, which is highly important for CSCs, may be responsible for a partial reversion of the stem-like phenotype observed with prolonged PEI and PDC treatment. Several markers also indicate the cell death mode to be capable of inducing an anti-cancer immune response. This study thus indicates the potential therapeutic perspectives of polycations against CSCs.

6.
Toxins (Basel) ; 13(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065185

RESUMO

The protein transduction and antimicrobial activities of histidine-rich designer peptides were investigated as a function of their sequence and compared to gene transfection, lentivirus transduction and calcein release activities. In membrane environments, the peptides adopt helical conformations where the positioning of the histidine side chains defines a hydrophilic angle when viewed as helical wheel. The transfection of DNA correlates with calcein release in biophysical experiments, being best for small hydrophilic angles supporting a model where lysis of the endosomal membrane is the limiting factor. In contrast, antimicrobial activities show an inverse correlation suggesting that other interactions and mechanisms dominate within the bacterial system. Furthermore, other derivatives control the lentiviral transduction enhancement or the transport of proteins into the cells. Here, we tested the transport into human cell lines of luciferase (63 kDa) and the ribosome-inactivating toxin saporin (30 kDa). Notably, depending on the protein, different peptide sequences are required for the best results, suggesting that the interactions are manifold and complex. As such, designed LAH4 peptides assure a large panel of biological and biophysical activities whereby the optimal result can be tuned by the physico-chemical properties of the sequences.


Assuntos
Anti-Infecciosos/farmacologia , Histidina/química , Peptídeos/farmacologia , Transporte Proteico/efeitos dos fármacos , Anti-Infecciosos/química , Linhagem Celular Tumoral , Desenho de Fármacos , Fluoresceínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Luciferases/metabolismo , Peptídeos/química , Saporinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA