Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 21(2): 220-230, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31664760

RESUMO

Liquid-liquid phase separation (LLPS) in cells is known as a complex physicochemical process causing the formation of membrane-less organelles (MLOs). Cells have well-defined different membrane-surrounded organelles like mitochondria, endoplasmic reticulum, lysosomes, peroxisomes, etc., however, on demand they can create MLOs as stress granules, nucleoli and P bodies to cover vital functions and regulatory activities. However, the mechanism of intracellular molecule assembly into functional compartments within a living cell remains till now not fully understood. in vitro and in vivo investigations unveiled that MLOs emerge after preceding liquid-liquid, liquid-gel, liquid-semi-crystalline, or liquid-crystalline phase separations. Liquid-liquid and liquid-gel MLOs form the majority of cellular phase separation events, while the occurrence of micro-sized crystals in cells was only rarely observed, however can be considered as a result of a preceding protein phase separation event. In vivo, also known and termed as in cellulo crystals, are reported since 1853. In some cases, they have been linked to vital cellular functions, such as storage and detoxification. However, the occurrence of in cellulo crystals is also associated to diseases like cataract, hemoglobin C diseases, etc. Therefore, better knowledge about the involved molecular processes will support drug discovery investigations to cure diseases related to in cellulo crystallization. We summarize physical and chemical determinants known today required for phase separation initiation and formation and in cellulo crystal growth. In recent years it has been demonstrated that LLPS plays a crucial role in cell compartmentalization and formation of MLOs. Here we discuss potential mechanisms and potential crowding agents involved in protein phase separation and in cellulo crystallization.


Assuntos
Células , Extração Líquido-Líquido , Proteínas , Células/química , Cristalização , Humanos , Organelas/química , Proteínas/química
2.
BMC Med Educ ; 22(1): 3, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980108

RESUMO

BACKGROUND: The social distancing and suspension of on-campus learning, imposed by the COVID-19 pandemic, are likely to influence medical training for months if not years. Thus, there is a need for digital replacement for classroom teaching, especially for hands-on courses, during which social distancing is hardly possible. Here, we investigated students' learning experience with a newly designed digital training course in neurophysiology, with intercalated teaching blocks in either asynchronous (unsupervised online lectures and e-labs) or synchronous (online seminars, supervised by instructors) formats. METHODS: The accompanying anonymized prospective study included 146 student participants. At the beginning and the end of the course, students were invited to answer anonymous online questionnaires with 18 and 25 items, respectively. We conducted both qualitative analyses of students' survey responses and statistical analyses of the results of cohort-specific summative examinations. The summative assessment results were compared both between 4 current cohorts and with the respective historical cohorts. RESULTS: Despite having little prior experience with e-learning (4.5 on the 1-7 scale), students adapted remarkably well to this online format. They appreciated its higher flexibility, time efficiency, student-oriented nature (especially when using inverted classroom settings), tolerance towards the individual learning style and family circumstances, and valued the ability to work through lectures and e-labs at their own learning speed. The major complaints concerned diminished social contacts with instructors and fellow students, the inability to ask questions as they occur, and the lack of sufficient technical expertise. The students valued the newly developed e-labs, especially the implementation of interactive preparative measures (PreLabs) and the intuitive lab design offered by the chosen software (Lt Platform from AD Instruments). The summative examinations at the end of the course documented the quality of knowledge transfer, which was comparable to that of previous classically instructed cohorts. CONCLUSION: Despite the missing personal contact between the faculty and the students, inherent to online teaching, the all-digital training course described here proofed to be of good educational value and, in case the pandemic continues, is worse considering for the future. Some of the described building blocks, like digital lectures or interactive PreLabs, may survive the pandemics to enrich the medical education toolbox in the future.


Assuntos
COVID-19 , Educação a Distância , Humanos , Neurofisiologia , Pandemias , Estudos Prospectivos , SARS-CoV-2
3.
Int J Med Microbiol ; 306(4): 196-205, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27086198

RESUMO

Drug repositioning, i.e. use of existing medicals to treat a different illness, is especially rewarding for neglected tropical diseases (NTD), since in this field the pharmaceutical industry is rather reluctant to spend vast investments for drug development. NTDs afflict primarily poor populations in under-developed countries, which minimizes financial profit. Here we investigated the trypanocidal effect of clomipramine, a commercial antipsychotic drug, on Trypanosoma brucei. The data showed that this drug killed the parasite with an IC50 of about 5µM. Analysis of the involved cell death mechanism revealed furthermore an initial autophagic stress response and finally the induction of apoptosis. The latter was substantiated by a set of respective markers such as phosphatidylserine exposition, DNA degradation, loss of the inner mitochondrial membrane potential and characteristic morphological changes. Clomipramine was described as a trypanothione inhibitor, but as judged from our results it also showed DNA binding capacities and induced substantial morphological changes. We thus consider it likely that the drug induces a multifold adverse interaction with the parasite's physiology and induces stress in a way that trypanosomes cannot cope with.


Assuntos
Antiprotozoários/farmacologia , Apoptose , Clomipramina/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50
4.
Cell Physiol Biochem ; 32(4): 880-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24217645

RESUMO

BACKGROUND: Trypanosoma brucei is a primitive parasitic protozoan that thrives in diverse environments such as the midgut of the tsetse fly and the blood of a mammalian host. For an adequate adaptation to these environments, the parasite's aquaglyceroporins play an important role. METHODS AND RESULTS: In order to test their ability to transport trivalent arsenic and antimony, we expressed the three known Trypanosoma brucei aquaglyceroporins (TbAQPs) in the heterologous systems of yeast null aquaporin mutant and Xenopus laevis oocytes. For both expression systems, we found a pH dependent intracellular accumulation of As(III) or Sb(III) mediated by all of the three TbAQPs, with the exception of TbAQP1-As(III) uptake. Additionally, we observed that Trypanosoma brucei aquaglyceroporins allow the passage of As(III) in both directions. CONCLUSION: Taken together, these results demonstrated that T. brucei aquaglyceroporins can serve as entry routes for As(III) and Sb(III) into the parasitic cell, and that this uptake is pH sensitive. Therefore, aquaporins of protozoan parasites may be considered useful as a vehicle for drug delivery.


Assuntos
Antimônio/metabolismo , Aquagliceroporinas/metabolismo , Arsenitos/metabolismo , Trypanosoma brucei brucei/metabolismo , Transporte Biológico , Concentração de Íons de Hidrogênio
5.
Cell Physiol Biochem ; 32(4): 801-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24080940

RESUMO

BACKGROUND/AIMS: Erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte outer membrane. Susceptibility to eryptosis is enhanced in aged erythrocytes and stimulated by NFκB-inhibitors Bay 11-7082 and parthenolide. Here we explored whether expression of NFκB and susceptibility to inhibitor-induced eryptosis is sensitive to erythrocyte age. METHODS: Human erythrocytes were separated into five fractions, based on age-associated characteristics cell density and volume. NFκB compared to ß-actin protein abundance was estimated by Western blotting and cell volume from forward scatter. Phosphatidylserine exposure was identified using annexin-V binding. RESULTS: NFκB was most abundant in young erythrocytes but virtually absent in aged erythrocytes. A 24h or 48h exposure to Ringer resulted in spontaneous decrease of forward scatter and increase of annexin V binding, effects more pronounced in aged than in young erythrocytes. Both, Bay 11-7082 (20 µM) and parthenolide (100 µM) triggered eryptosis, effects again most pronounced in aged erythrocytes. CONCLUSION: NFκB protein abundance is lowest and spontaneous eryptosis as well as susceptibility to Bay 11-7082 and parthenolide highest in aged erythrocytes. Thus, inhibition of NFκB signalling alone is not responsible for the stimulation of eryptosis by parthenolide or Bay 11-7082.


Assuntos
Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Nitrilas/farmacologia , Sesquiterpenos/farmacologia , Sulfonas/farmacologia , Envelhecimento/fisiologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Humanos , Fatores de Tempo
6.
Parasitology ; 140(6): 735-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23369253

RESUMO

There is an alarming rate of human African trypanosomiasis recrudescence in many parts of sub-Saharan Africa. Yet, the disease has no successful chemotherapy. Trypanosoma lacks the enzymatic machinery for the de novo synthesis of purine nucleotides, and is critically dependent on salvage mechanisms. Inosine 5'-monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide metabolism. Here, we characterize recombinant Trypanosoma brucei IMPDH (TbIMPDH) to investigate the enzymatic differences between TbIMPDH and host IMPDH. Size-exclusion chromatography and analytical ultracentrifugation sedimentation velocity experiments reveal that TbIMPDH forms a heptamer, different from type 1 and 2 mammalian tetrameric IMPDHs. Kinetic analysis reveals calculated K m values of 30 and 1300 µ m for IMP and NAD, respectively. The obtained K m value of TbIMPDH for NAD is approximately 20-200-fold higher than that of mammalian enzymes and indicative of a different NAD binding mode between trypanosomal and mammalian IMPDHs. Inhibition studies show K i values of 3·2 µ m, 21 nM and 3·3 nM for ribavirin 5'-monophosphate, mycophenolic acid and mizoribine 5'-monophosphate, respectively. Our results show that TbIMPDH is different from its mammalian counterpart and thus may be a good target for further studies on anti-trypanosomal drugs.


Assuntos
IMP Desidrogenase/isolamento & purificação , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Concentração de Íons de Hidrogênio , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Cinética , Ácido Micofenólico/farmacologia , NAD/metabolismo , Nucleotídeos/farmacologia , Multimerização Proteica , Proteínas Recombinantes , Ribonucleosídeos/farmacologia , Alinhamento de Sequência , Trypanosoma brucei brucei/genética
7.
Front Immunol ; 14: 1253648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781403

RESUMO

Introduction: Invasion of the central nervous system (CNS) is the most serious consequence of Trypanosoma brucei infection, which causes sleeping sickness. Recent experimental data have revealed some more insights into the disease during the meningoencephalitic stage. However, detailed cellular processes befalling the CNS during the disease are poorly understood. Methods: To further address this issue, we implanted a cranial window on the cortex of B6.129P2(Cg)-Cx3cr1tm1Litt/J mice, infected them with Trypanosoma brucei expressing RFP via intraperitoneal injection, and monitored microglial cells and parasites longitudinally over 30 days using in vivo 2-photon imaging. We correlated the observed changes with histological analyses to evaluate the recruitment of peripheral immune cells. Results and discussion: We uncovered an early involvement of microglia that precedes invasion of the CNS by the parasite. We accomplished a detailed characterization of the progressive sequence of events that correlates with microglial morphological changes and microgliosis. Our findings unveiled a heterogeneous microglial response in places of initial homeostatic disruption near brain barriers and pointed out an exceptional capability of microglia to hamper parasite proliferation inside the brain. We also found early signs of inflammation in the meninges, which synchronize with the microglial response. Moreover, we observed a massive infiltration of peripheral immune cells into the parenchyma as a signature in the final disease stage. Overall, our study provides new insights into the host-pathogen immune interactions in the meningeal and parenchymal compartments of the neocortex.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Camundongos , Animais , Microglia/patologia , Encéfalo , Sistema Nervoso Central/patologia
8.
Br J Haematol ; 157(5): 606-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22429222

RESUMO

Mature, circulating erythrocytes undergo senescence, which limits their life span to approximately 120 d. Upon injury, erythrocytes may undergo suicidal erythrocyte death or eryptosis, which may accelerate senescence and shorten their survival. Eryptosis is defined as cell shrinkage and exposure of phosphatidylserine at the cell surface. Triggers of eryptosis include oxidative stress. The present study addresses the impact of erythrocyte age on the relative susceptibility to eryptosis. Erythrocytes were separated into five fractions, based on age-associated differences in density and volume. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, the cell volume from forward scatter, and the Ca(2+) level from Fluo-3-dependent fluorescence. In addition, glutathione (GSH) concentrations were measured by an enzymatic/colourimetric method. After 48 h incubation in Ringer solution, Annexin V binding increased significantly with erythrocyte age. The differences were not accompanied by altered GSH concentrations, but were reversed by addition of the antioxidant N-acetyl-L-cysteine in vitro. Also, N-acetyl-L-cysteine significantly prolonged the half-life of circulating mouse erythrocytes in vivo. Thus, the susceptibility to eryptosis increases with the age of the erythrocytes, and this effect is at least partially due to enhanced sensitivity to oxidative stress.


Assuntos
Morte Celular/fisiologia , Senescência Celular/fisiologia , Eritrócitos/metabolismo , Acetilcisteína/metabolismo , Cálcio/metabolismo , Eritrócitos/patologia , Glutationa/metabolismo , Humanos , Fosfatidilserinas/metabolismo
9.
Cells ; 11(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159312

RESUMO

Human erythrocytes are organelle-free cells packaged with iron-containing hemoglobin, specializing in the transport of oxygen. With a total number of approximately 25 trillion cells per individual, the erythrocyte is the most abundant cell type not only in blood but in the whole organism. Despite their low complexity and their inability to transcriptionally upregulate antioxidant defense mechanisms, they display a relatively long life time, of 120 days. This ensures the maintenance of tissue homeostasis where the clearance of old or damaged erythrocytes is kept in balance with erythropoiesis. Whereas the regulatory mechanisms of erythropoiesis have been elucidated over decades of intensive research, the understanding of the mechanisms of erythrocyte clearance still requires some refinement. Here, we present the main pathways leading to eryptosis, the programmed death of erythrocytes, with special emphasis on Ca2+ influx, the generation of ceramide, oxidative stress, kinase activation, and iron metabolism. We also compare stress-induced erythrocyte death with erythrocyte ageing and clearance, and discuss the similarities between eryptosis and ferroptosis, the iron-dependent regulated death of nucleated blood cells. Finally, we focus on the pathologic consequences of deranged eryptosis, and discuss eryptosis in the context of different infectious diseases, e.g., viral or parasitic infections, and hematologic disorders.


Assuntos
Eriptose , Cálcio/metabolismo , Eritrócitos/metabolismo , Eritropoese , Humanos , Ferro/metabolismo
10.
iScience ; 25(4): 104014, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313698

RESUMO

Trypanosoma brucei is the causative agent of human African trypanosomiasis. The parasite transmigrates from blood vessels across the choroid plexus epithelium to enter the central nervous system, a process that leads to the manifestation of second stage sleeping sickness. Using an in vitro model of the blood-cerebrospinal fluid barrier, we investigated the mechanism of the transmigration process. For this, a monolayer of human choroid plexus papilloma cells was cultivated on a permeable membrane that mimics the basal lamina underlying the choroid plexus epithelial cells. Plexus cells polarize and interconnect forming tight junctions. Deploying different T. brucei brucei strains, we observed that geometry and motility are important for tissue invasion. Using fluorescent microscopy, the parasite's moving was visualized between plexus epithelial cells. The presented model provides a simple tool to screen trypanosome libraries for their ability to infect cerebrospinal fluid or to test the impact of chemical substances on transmigration.

11.
Am J Physiol Cell Physiol ; 300(6): C1306-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21307349

RESUMO

Ca(+)-dependent signaling regulates the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. The activity of DCs is suppressed by glucocorticoids, potent immunosuppressive hormones. The present study explored whether the glucocorticoid dexamethasone influences the cytosolic Ca(2+) concentration ([Ca(2+)](i)) in DCs. To this end, DCs were isolated from mouse bone marrow. According to fura-2 fluorescence, exposure of DCs to lipopolysaccharide (LPS, 100 ng/ml) increased [Ca(2+)](i), an effect significantly blunted by overnight incubation with 10 nM dexamethasone before LPS treatment. Dexamethasone did not affect the Ca(2+) content of intracellular stores, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2 and SERCA3 expression, ryanodine receptor (RyR)1 expression, or Ca(2+) entry through store-operated Ca(2+) channels. In contrast, dexamethasone increased the transcript level and the membrane protein abundance of the Na(+)/Ca(2+) exchanger NCX3. The activity of Na(+)/Ca(2+) exchangers was assessed by removal of extracellular Na(+) in the presence of external Ca(2+), a maneuver triggering the Ca(2+) influx mode. Indeed, Na(+) removal resulted in a rapid transient increase of [Ca(2+)](i) and induced an outwardly directed current as measured in whole cell patch-clamp experiments. Dexamethasone significantly augmented the increase of [Ca(2+)](i) and the outward current following removal of extracellular Na(+). The NCX blocker KB-R7943 reversed the inhibitory effect of dexamethasone on LPS-induced increase in [Ca(2+)](i). Dexamethasone blunted LPS-induced stimulation of CD86 expression and TNF-α production, an effect significantly less pronounced in the presence of NCX blocker KB-R7943. In conclusion, our results show that glucocorticoid treatment blunts LPS-induced increase in [Ca(2+)](i) in DCs by increasing expression and activity of Na(+)/Ca(2+) exchanger NCX3. The effect contributes to the inhibitory effect of the glucocorticoid on DC maturation.


Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Trocador de Sódio e Cálcio/metabolismo , Animais , Antígeno B7-2/metabolismo , Cálcio/metabolismo , Células Dendríticas/citologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Técnicas de Patch-Clamp , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tioureia/análogos & derivados , Tioureia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
J Exp Med ; 202(11): 1493-505, 2005 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-16330813

RESUMO

Extracellular adenosine (Ado) has been implicated as central signaling molecule during conditions of limited oxygen availability (hypoxia), regulating physiologic outcomes as diverse as vascular leak, leukocyte activation, and accumulation. Presently, the molecular mechanisms that elevate extracellular Ado during hypoxia are unclear. In the present study, we pursued the hypothesis that diminished uptake of Ado effectively enhances extracellular Ado signaling. Initial studies indicated that the half-life of Ado was increased by as much as fivefold after exposure of endothelia to hypoxia. Examination of expressional levels of the equilibrative nucleoside transporter (ENT)1 and ENT2 revealed a transcriptionally dependent decrease in mRNA, protein, and function in endothelia and epithelia. Examination of the ENT1 promoter identified a hypoxia inducible factor 1 (HIF-1)-dependent repression of ENT1 during hypoxia. Using in vitro and in vivo models of Ado signaling, we revealed that decreased Ado uptake promotes vascular barrier and dampens neutrophil tissue accumulation during hypoxia. Moreover, epithelial Hif1alpha mutant animals displayed increased epithelial ENT1 expression. Together, these results identify transcriptional repression of ENT as an innate mechanism to elevate extracellular Ado during hypoxia.


Assuntos
Adenosina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/biossíntese , Transportador Equilibrativo 2 de Nucleosídeo/biossíntese , Transdução de Sinais/efeitos dos fármacos , Vasodilatadores/farmacologia , Adenosina/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular , Regulação para Baixo/fisiologia , Células Epiteliais/metabolismo , Humanos , Fator 1 Induzível por Hipóxia , Neutrófilos/metabolismo , Transdução de Sinais/fisiologia , Vasodilatadores/metabolismo
13.
Cell Physiol Biochem ; 27(3-4): 411-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21471730

RESUMO

Previous studies using bloodstream form Trypanosoma brucei have shown that glycerol transport in this parasite occurs via specific membrane proteins, namely a glycerol transporter and glycerol channels [1]. Later, we cloned, expressed and characterized the transport properties of all three aquaglyceroporins (AQP1-3) [2], which were found permeable for water, glycerol and other small uncharged solutes like dihydroxyacetone [3]. Here, we report on the cellular localization of TbAQP1 and TbAQP3 in bloodstream form trypanosomes. Indirect immunofluorescence analysis showed that TbAQP1 is exclusively localized in the flagellar membrane, whereas TbAQP3 was found in the plasma membrane.In addition, we analyzed the functions of all 3 AQPs, using an inducible inheritable double-stranded RNA interference methodology. All AQP knockdown cell lines were still able to survive hypo-osmotic stress conditions, except AQP2 knockdown parasites. Depleted TbAQP2 negatively impacted cell growth and the regulatory volume recovery, whereas AQP1 und 3 knockdown trypanosomes displayed phenotypes consistent with their localization in external membranes. A simultaneous knockdown of all 3 AQPs showed that the cells were able to substitute the missing glycerol uptake capability through a putative glycerol transporter.


Assuntos
Aquagliceroporinas/fisiologia , Glicerol/metabolismo , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/metabolismo , Aquagliceroporinas/análise , Aquagliceroporinas/genética , Aquaporina 1/análise , Aquaporina 1/genética , Aquaporina 1/fisiologia , Aquaporina 2/análise , Aquaporina 2/genética , Aquaporina 2/fisiologia , Aquaporina 3/análise , Aquaporina 3/genética , Aquaporina 3/fisiologia , Transporte Biológico , Linhagem Celular , Técnica Indireta de Fluorescência para Anticorpo , Técnicas de Silenciamento de Genes , Glicerol/farmacologia , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Piruvatos/metabolismo , Equilíbrio Hidroeletrolítico
14.
Antioxidants (Basel) ; 10(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34829586

RESUMO

Neural tissue is one of the main oxygen consumers in the mammalian body, and a plentitude of metabolic as well as signaling processes within the brain is accompanied by the generation of reactive oxygen (ROS) and nitrogen (RNS) species. Besides the important signaling roles, both ROS and RNS can damage/modify the self-derived cellular components thus promoting neuroinflammation and oxidative stress. While previously, the latter processes were thought to progress linearly with age, newer data point to midlife as a critical turning point. Here, we describe (i) the main pathways leading to ROS/RNS generation within the brain, (ii) the main defense systems for their neutralization and (iii) summarize the recent literature about considerable changes in the energy/ROS homeostasis as well as activation state of the brain's immune system at midlife. Finally, we discuss the role of calorie restriction as a readily available and cost-efficient antiaging and antioxidant lifestyle intervention.

15.
J Exp Med ; 196(9): 1241-51, 2002 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-12417633

RESUMO

Trypanosoma cruzi is the etiological agent of Chagas' disease. So far, first choice anti-chagasic drugs in use have been shown to have undesirable side effects in addition to the emergence of parasite resistance and the lack of prospect for vaccine against T. cruzi infection. Thus, the isolation and characterization of molecules essential in parasite metabolism of the anti-chagasic drugs are fundamental for the development of new strategies for rational drug design and/or the improvement of the current chemotherapy. While searching for a prostaglandin (PG) F(2alpha) synthase homologue, we have identified a novel "old yellow enzyme" from T. cruzi (TcOYE), cloned its cDNA, and overexpressed the recombinant enzyme. Here, we show that TcOYE reduced 9,11-endoperoxide PGH(2) to PGF(2alpha) as well as a variety of trypanocidal drugs. By electron spin resonance experiments, we found that TcOYE specifically catalyzed one-electron reduction of menadione and beta-lapachone to semiquinone-free radicals with concomitant generation of superoxide radical anions, while catalyzing solely the two-electron reduction of nifurtimox and 4-nitroquinoline-N-oxide drugs without free radical production. Interestingly, immunoprecipitation experiments revealed that anti-TcOYE polyclonal antibody abolished major reductase activities of the lysates toward these drugs, identifying TcOYE as a key drug-metabolizing enzyme by which quinone drugs have their mechanism of action.


Assuntos
NADPH Desidrogenase/metabolismo , Tripanossomicidas/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/metabolismo , Aspirina/farmacologia , Sequência de Bases , Catálise , Inibidores de Ciclo-Oxigenase/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , DNA de Protozoário , Dinoprosta/biossíntese , Dinoprostona/biossíntese , Expressão Gênica , Hidroxiprostaglandina Desidrogenases/genética , Indometacina/metabolismo , Indometacina/farmacologia , Dados de Sequência Molecular , NADPH Desidrogenase/genética , Naftoquinonas/metabolismo , Oxirredução , Prostaglandina D2/biossíntese , Homologia de Sequência de Aminoácidos , Trypanosoma cruzi/genética
16.
J Immunol ; 181(10): 6803-9, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18981098

RESUMO

Ca(2+)-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca(2+)](i) upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca(2+)](i), which was due to Ca(2+) release from intracellular stores and influx of extracellular Ca(2+) across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca(2+) release-activated Ca(2+) channels (CRAC). These currents were highly selective for Ca(2+), exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca(2+)-dependent inactivation. In addition, the LPS-induced increase of [Ca(2+)](i) was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K(+) (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-alpha and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the I(CRAC) inhibitor SKF-96365. Taken together, our results demonstrate that Ca(2+) influx in LPS-stimulated DCs occurs via Ca(2+) release-activated Ca(2+) channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions.


Assuntos
Canais de Cálcio/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Diferenciação Celular/imunologia , Movimento Celular , Células Dendríticas/citologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Interleucina-6/biossíntese , Lipopolissacarídeos/imunologia , Potenciais da Membrana/imunologia , Camundongos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/biossíntese
17.
Biol Rev Camb Philos Soc ; 95(2): 333-349, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682077

RESUMO

Involvement of the central nervous system (CNS) is the most severe consequence of some parasitic infections. Protozoal infections comprise a group of diseases that together affect billions of people worldwide and, according to the World Health Organization, are responsible for more than 500000 deaths annually. They include African and American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, and amoebiasis. Mechanisms underlying invasion of the brain parenchyma by protozoa are not well understood and may depend on parasite nature: a vascular invasion route is most common. Immunosuppression favors parasite invasion into the CNS and therefore the host immune response plays a pivotal role in the development of a neuropathology in these infectious diseases. In the brain, microglia are the resident immune cells active in defense against pathogens that target the CNS. Beside their direct role in innate immunity, they also play a principal role in coordinating the trafficking and recruitment of other immune cells from the periphery to the CNS. Despite their evident involvement in the neuropathology of protozoan infections, little attention has given to microglia-parasite interactions. This review describes the most prominent features of microglial cells and protozoan parasites and summarizes the most recent information regarding the reaction of microglial cells to parasitic infections. We highlight the involvement of the periphery-brain axis and emphasize possible scenarios for microglia-parasite interactions.


Assuntos
Infecções Protozoárias do Sistema Nervoso Central/patologia , Microglia/patologia , Eucariotos/classificação , Eucariotos/fisiologia , Humanos
18.
Cell Physiol Biochem ; 24(1-2): 11-6, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19590188

RESUMO

The plateau phase of the ventricular action potential is the result of balanced Ca2+ influx and K+ efflux. The action potential is finally terminated by repolarising K+ currents. Under beta-adrenergic stimulation the slowly activating component of the human cardiac delayed rectifier K+ current I(Ks) provides the major repolarising component. I(Ks) channels are heteromeric channels composed of KCNQ1 and KCNE1. Mutations in the voltage sensor S4 of KCNQ1 are associated with long-QT syndrome 1 (LQTS1). Here, we study the effects of the mutations S225L, I235N and L239P located in S4. The respective channels were expressed in Xenopus oocytes and analyzed by dual electrode voltage clamp. As a result all mutants shifted the voltage dependence of activation to the right and reduced the voltage dependence of deactivation kinetics. The activation kinetics were differently affected in homomeric mutant channels compared to wild type KCNQ1. All three mutations reduced KCNQ1/KCNE1 channel currents in a dominant-negative manner when the mutants were coexpressed with wt subunits suggesting reduced I(Ks) as the molecular basis of LQT1.


Assuntos
Canal de Potássio KCNQ1/fisiologia , Síndrome do QT Longo/genética , Mutação/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Fenômenos Eletrofisiológicos , Humanos , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/metabolismo , Dados de Sequência Molecular , Oócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Xenopus laevis
19.
Methods Mol Biol ; 2034: 149-161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31392683

RESUMO

An extensive number of parasites are able to invade the central nervous system (CNS) and cause a plethora of pathologies. Microglia, the resident macrophages of nervous tissue, are responsible for the protection against intruders, and therefore, they are an important line of defense against parasites. The phagocytosis is one of the weapons in the microglia's arsenal to fight against parasites. Several prior studies of microglia-parasite interactions and phagocytosis have been performed using microscopic techniques. As this methodology allows only a limited number of cells to be analyzed, additional approaches are required to provide a more complete picture of how microglia interact with these pathogens. Here, we describe a protocol based on flow cytometry to analyze single-celled parasites/microglia interactions in thousands of events in an accurate and reliable way. We use Trypanosoma brucei as a model organism, as it is a well-known parasite causing primary meningoencephalitis. However, the interaction/phagocytosis assay can be applied to other single-celled parasites as well.


Assuntos
Citometria de Fluxo/métodos , Interações Hospedeiro-Parasita/fisiologia , Microglia/parasitologia , Fagocitose , Trypanosoma brucei brucei/fisiologia , Animais , Camundongos , Microglia/patologia
20.
Acta Trop ; 188: 34-40, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30153427

RESUMO

Trypanosoma brucei, a flagellated protozoan causing the deadly tropical disease Human African Trypanosomiasis (HAT), affects people in sub-Saharan Africa. HAT therapy relies upon drugs which use is limited by toxicity and rigorous treatment regimes, while development of vaccines remains elusive, due to the effectiveness of the parasite´s antigenic variation. Here, we evaluate a hypothetical protein Tb427.10.13790, as a potential drug target. This protein is conserved among all kinetoplastids, but lacks homologs in all other pro- and eukaryotes. Knockdown of Tb427.10.13790 resulted in appearance of monster cells containing multiple nuclei and multiple flagella, a considerable enlargement of the flagellar pocket and eventually a lethal phenotype. Furthermore, analysis of kinetoplast and nucleus division in the knockdown cell line revealed a partial cell cycle arrest and failure to initiate cytokinesis. Likewise, overexpression of the respective protein fused with enhanced green fluorescent protein was also lethal for T. brucei. In these cells, the labelled protein appeared as a single dot near kinetoplast and flagellar pocket. Our results reveal that Tb427.10.13790 is essential for the parasite´s viability and may be a suitable new anti-trypanosomatid drug target candidate. Furthermore, we suggest that it might be worthwhile to investigate also other of the many so far just annotated trypanosome genes as a considerable number of them to lack human homologs but may be of critical importance for the kinetoplastid parasites.


Assuntos
Citocinese , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/citologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA