Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 36(9): 2013-2028, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147689

RESUMO

Adaptive mutations play an important role in molecular evolution. However, the frequency and nature of these mutations at the intramolecular level are poorly understood. To address this, we analyzed the impact of protein architecture on the rate of adaptive substitutions, aiming to understand how protein biophysics influences fitness and adaptation. Using Drosophila melanogaster and Arabidopsis thaliana population genomics data, we fitted models of distribution of fitness effects and estimated the rate of adaptive amino-acid substitutions both at the protein and amino-acid residue level. We performed a comprehensive analysis covering genome, gene, and protein structure, by exploring a multitude of factors with a plausible impact on the rate of adaptive evolution, such as intron number, protein length, secondary structure, relative solvent accessibility, intrinsic protein disorder, chaperone affinity, gene expression, protein function, and protein-protein interactions. We found that the relative solvent accessibility is a major determinant of adaptive evolution, with most adaptive mutations occurring at the surface of proteins. Moreover, we observe that the rate of adaptive substitutions differs between protein functional classes, with genes encoding for protein biosynthesis and degradation signaling exhibiting the fastest rates of protein adaptation. Overall, our results suggest that adaptive evolution in proteins is mainly driven by intermolecular interactions, with host-pathogen coevolution likely playing a major role.


Assuntos
Adaptação Biológica , Evolução Molecular , Conformação Proteica , Animais , Arabidopsis , Drosophila melanogaster , Genoma de Inseto , Genoma de Planta
2.
Proc Natl Acad Sci U S A ; 112(20): 6413-8, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941379

RESUMO

The unique inheritance pattern of the X chromosome exposes it to natural selection in a way that is different from that of the autosomes, potentially resulting in accelerated evolution. We perform a comparative analysis of X chromosome polymorphism in 10 great ape species, including humans. In most species, we identify striking megabase-wide regions, where nucleotide diversity is less than 20% of the chromosomal average. Such regions are found exclusively on the X chromosome. The regions overlap partially among species, suggesting that the underlying targets are partly shared among species. The regions have higher proportions of singleton SNPs, higher levels of population differentiation, and a higher nonsynonymous-to-synonymous substitution ratio than the rest of the X chromosome. We show that the extent to which diversity is reduced is incompatible with direct selection or the action of background selection and soft selective sweeps alone, and therefore, we suggest that very strong selective sweeps have independently targeted these specific regions in several species. The only genomic feature that we can identify as strongly associated with loss of diversity is the location of testis-expressed ampliconic genes, which also have reduced diversity around them. We hypothesize that these genes may be responsible for selective sweeps in the form of meiotic drive caused by an intragenomic conflict in male meiosis.


Assuntos
Variação Genética , Hominidae/genética , Polimorfismo Genético , Seleção Genética/genética , Cromossomo X/genética , Animais , Biologia Computacional , Bases de Dados Genéticas , Genética Populacional , Modelos Genéticos , Especificidade da Espécie
3.
Proc Natl Acad Sci U S A ; 109(27): 10954-9, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22711811

RESUMO

In a genome alignment of five individuals of the ascomycete fungus Zymoseptoria pseudotritici, a close relative of the wheat pathogen Z. tritici (synonym Mycosphaerella graminicola), we observed peculiar diversity patterns. Long regions up to 100 kb without variation alternate with similarly long regions of high variability. The variable segments in the genome alignment are organized into two main haplotype groups that have diverged ∼3% from each other. The genome patterns in Z. pseudotritici are consistent with a hybrid speciation event resulting from a cross between two divergent haploid individuals. The resulting hybrids formed the new species without backcrossing to the parents. We observe no variation in 54% of the genome in the five individuals and estimate a complete loss of variation for at least 30% of the genome in the entire species. A strong population bottleneck following the hybridization event caused this loss of variation. Variable segments in the Z. pseudotritici genome exhibit the two haplotypes contributed by the parental individuals. From our previously estimated recombination map of Z. tritici and the size distribution of variable chromosome blocks untouched by recombination we estimate that the hybridization occurred ∼380 sexual generations ago. We show that the amount of lost variation is explained by genetic drift during the bottleneck and by natural selection, as evidenced by the correlation of presence/absence of variation with gene density and recombination rate. The successful spread of this unique reproductively isolated pathogen highlights the strong potential of hybridization in the emergence of pathogen species with sexual reproduction.


Assuntos
Ascomicetos/genética , Quimera/genética , Evolução Molecular , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ascomicetos/classificação , Genes Fúngicos/genética , Genoma Fúngico/genética , Haplótipos , Metagenômica , Dados de Sequência Molecular , Seleção Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA