Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(7): e2201076120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749728

RESUMO

Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.


Assuntos
Tartarugas , Animais , Ecossistema , Dinâmica Populacional
2.
BMC Genomics ; 22(1): 346, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985425

RESUMO

BACKGROUND: Transcriptomic data has demonstrated utility to advance the study of physiological diversity and organisms' responses to environmental stressors. However, a lack of genomic resources and challenges associated with collecting high-quality RNA can limit its application for many wild populations. Minimally invasive blood sampling combined with de novo transcriptomic approaches has great potential to alleviate these barriers. Here, we advance these goals for marine turtles by generating high quality de novo blood transcriptome assemblies to characterize functional diversity and compare global transcriptional profiles between tissues, species, and foraging aggregations. RESULTS: We generated high quality blood transcriptome assemblies for hawksbill (Eretmochelys imbricata), loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) turtles. The functional diversity in assembled blood transcriptomes was comparable to those from more traditionally sampled tissues. A total of 31.3% of orthogroups identified were present in all four species, representing a core set of conserved genes expressed in blood and shared across marine turtle species. We observed strong species-specific expression of these genes, as well as distinct transcriptomic profiles between green turtle foraging aggregations that inhabit areas of greater or lesser anthropogenic disturbance. CONCLUSIONS: Obtaining global gene expression data through non-lethal, minimally invasive sampling can greatly expand the applications of RNA-sequencing in protected long-lived species such as marine turtles. The distinct differences in gene expression signatures between species and foraging aggregations provide insight into the functional genomics underlying the diversity in this ancient vertebrate lineage. The transcriptomic resources generated here can be used in further studies examining the evolutionary ecology and anthropogenic impacts on marine turtles.


Assuntos
Tartarugas , Animais , Sequência de Bases , Especificidade da Espécie , Transcriptoma , Tartarugas/genética
3.
Oecologia ; 188(4): 1273-1285, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30406821

RESUMO

Evaluating long-term drivers of foraging ecology and population productivity is crucial for providing ecological baselines and forecasting species responses to future environmental conditions. Here, we examine the trophic ecology and habitat use of North Atlantic leatherback turtles (St. Croix nesting population) and investigate the effects of large-scale oceanographic conditions on leatherback foraging dynamics. We used bulk and compound-specific nitrogen isotope analysis of amino acids (CSIA-AA) to estimate leatherback trophic position (TP) over an 18-year period, compare these estimates with TP estimates from a Pacific leatherback population, and elucidate the pre-nesting habitat use patterns of leatherbacks. Our secondary objective was to use oceanographic indices and nesting information from St. Croix leatherbacks to evaluate relationships between trophic ecology, nesting parameters, and regional environmental conditions measured by the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation. We found no change in leatherback TP over time and no difference in TP between Atlantic and Pacific leatherbacks, indicating that differences in trophic ecology between populations are an unlikely driver of the population dichotomy between Pacific and Atlantic leatherbacks. Isotope data suggested that St. Croix leatherbacks inhabit multiple oceanic regions prior to nesting, although, like their conspecifics in the Pacific, individuals exhibit fidelity to specific foraging regions. Leatherback nesting parameters were weakly related to the NAO, which may suggest that positive NAO phases benefit St. Croix leatherbacks, potentially through increases in resource availability in their foraging areas. Our data contribute to the understanding of leatherback turtle ecology and potential mechanistic drivers of the dichotomy between populations of this protected species.


Assuntos
Espécies em Perigo de Extinção , Tartarugas , Animais , Ecossistema , Oceanos e Mares , Ilhas Virgens Americanas
4.
Environ Sci Technol ; 51(16): 8962-8971, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28714301

RESUMO

The 2011 release of Fukushima-derived radionuclides into the Pacific Ocean made migratory sharks, teleosts, and marine mammals a source of speculation and anxiety regarding radiocesium (134+137Cs) contamination, despite a lack of actual radiocesium measurements for these taxa. We measured radiocesium in a diverse suite of large predators from the North Pacific Ocean and report no detectable (i.e., ≥ 0.1 Bq kg-1 dry wt) Fukushima-derived 134Cs in all samples, except in one olive ridley sea turtle (Lepidochelys olivacea) with trace levels (0.1 Bq kg-1). Levels of 137Cs varied within and across taxa, but were generally consistent with pre-Fukushima levels and were lower than naturally occurring 40K by one to one to two orders of magnitude. Predator size had a weaker effect on 137Cs and 40K levels than tissue lipid content. Predator stable isotope values (δ13C and δ15N) were used to infer recent migration patterns, and showed that predators in the central, eastern, and western Pacific should not be assumed to accumulate detectable levels of radiocesium a priori. Nondetection of 134Cs and low levels of 137Cs in diverse marine megafauna far from Fukushima confirms negligible increases in radiocesium, with levels comparable to those prior to the release from Fukushima. Reported levels can inform recently developed models of cesium transport and bioaccumulation in marine species.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Animais , Radioisótopos de Césio , Cadeia Alimentar , Japão , Oceano Pacífico , Tubarões , Tartarugas
5.
Proc Biol Sci ; 281(1777): 20132559, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24403331

RESUMO

Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch.


Assuntos
Migração Animal , Conservação dos Recursos Naturais/métodos , Pesqueiros , Tartarugas/fisiologia , Animais , Oceano Pacífico , Tecnologia de Sensoriamento Remoto
6.
Conserv Biol ; 28(1): 140-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24405417

RESUMO

Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost-effectiveness of nesting site and at-sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost-effectiveness measures. Nesting beach protection was the most cost-effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high-bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low-cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost-effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost-effective, particularly, if fisheries in the area are small and of little commercial value.


Assuntos
Conservação dos Recursos Naturais/economia , Espécies em Perigo de Extinção , Pesqueiros , Comportamento de Nidação , Tartarugas/fisiologia , Animais , California , Análise Custo-Benefício , Havaí , Indonésia , Modelos Biológicos , Crescimento Demográfico
7.
J Anim Ecol ; 82(4): 791-803, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23464527

RESUMO

Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile marine taxa, particularly threatened, endangered, or economically important species that cross through regional, national and international boundaries. The leatherback turtle (Dermochelys coriacea, Vandelli 1761) is one such transboundary species that spends time at breeding areas at low latitudes in the northwest Atlantic during spring and summer. From there, they migrate widely throughout the North Atlantic, but many show fidelity to one region off eastern Canada, where critical foraging habitat has been proposed. Our goal was to identify nesting beach origins for turtles foraging here. Using genetics, we identified natal beaches for 288 turtles that were live-captured off the coast of Nova Scotia, Canada. Turtles were sampled (skin or blood) and genotyped using 17 polymorphic microsatellite markers. Results from three assignment testing programs (ONCOR, GeneClass2 and Structure) were compared. Our nesting population reference data set included 1417 individuals from nine Atlantic nesting assemblages. A supplementary data set for 83 foraging turtles traced to nesting beaches using flipper tags and/or PIT tags (n = 72), or inferred from satellite telemetry (n = 11), enabled ground-truthing of the assignments. We first assigned turtles using only genetic information and then used the supplementary recapture information to verify assignments. ONCOR performed best, assigning 64 of the 83 recaptured turtles to natal beaches (77·1%). Turtles assigned to Trinidad (164), French Guiana (72), Costa Rica (44), St. Croix (7), and Florida (1) reflect the relative size of those nesting populations, although none of the turtles were assigned to four other potential source nesting assemblages. Our results demonstrate the utility of genetic approaches for determining source populations of foraging marine animals and include the first identification of natal rookeries of male leatherbacks, identified through satellite telemetry and verified with genetics. This work highlights the importance of long-term monitoring and tagging programmes in nesting and high-use foraging areas. Moreover, it provides a scientific basis for evaluating stock-specific effects of fisheries on migratory marine species, thus identifying where coordinated international recovery efforts may be most effective.


Assuntos
Tartarugas/genética , Tartarugas/fisiologia , Sistemas de Identificação Animal , Animais , Oceano Atlântico , Demografia , Feminino , Masculino , Repetições de Microssatélites , Telemetria
8.
R Soc Open Sci ; 10(5): 221547, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206959

RESUMO

Hawksbill sea turtles (Eretmochelys imbricata) from the Hawaiian archipelago form a small and genetically isolated population, consisting of only a few tens of individuals breeding annually. Most females nest on the island of Hawai'i, but little is known about the demographics of this rookery. This study used genetic relatedness, inferred from 135 microhaplotype markers, to determine breeding sex-ratios, estimate female nesting frequency and assess relationships between individuals nesting on different beaches. Samples were collected during the 2017 nesting season and final data included 13 nesting females and 1002 unhatched embryos, salvaged from 41 nests, of which 13 had no observed mother. Results show that most females used a single nesting beach laying 1-5 nests each. From female and offspring alleles, the paternal genotypes of 12 breeding males were reconstructed and many showed high relatedness to their mates. Pairwise relatedness of offspring revealed one instance of polygyny but otherwise suggested a 1 : 1 breeding-sex ratio. Relatedness analysis and spatial-autocorrelation of genotypes indicate that turtles from different nesting areas do not regularly interbreed, suggesting that strong natal homing tendencies in both sexes result in non-random mating across the study area. Complexes of nearby nesting beaches also showed unique patterns of inbreeding across loci, further indicating that Hawaiian hawksbill turtles have demographically discontinuous nesting populations separated by only tens of km.

9.
Animals (Basel) ; 13(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37106848

RESUMO

Leatherback turtles migrate long distances between nesting beaches and distant foraging areas worldwide. This study analyzes the genetic diversity, life history stage, spatiotemporal distribution, and associated threats of a foraging aggregation in the Southwest Atlantic Ocean. A total of 242 leatherbacks stranded or bycaught by artisanal fisheries were recorded from 1997 to 2021 in Uruguay, with sizes ranging from 110.0 to 170.0 cm carapace lengths, indicating that the aggregation is composed of large juveniles and adults. Results of Bayesian mixed-stock analysis show that leatherbacks come primarily from the West African rookeries, based on mitochondrial DNA sequences obtained from 59 of the turtles representing seven haplotypes, including a novel one (Dc1.7). The main threat identified in the area is the fisheries bycatch but most of the carcasses observed were badly decomposed. There was significant seasonal and interannual variability in strandings that is likely associated with the availability of prey and the intensity of the fishing effort. Taken together, these findings reinforce the importance of these South American foraging areas for leatherbacks and the need to determine regional habitat use and migratory routes across the broader Atlantic region, in order to develop effective conservation measures to mitigate threats both at nesting beaches and foraging areas.

10.
Mol Phylogenet Evol ; 65(1): 241-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750111

RESUMO

The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution.


Assuntos
Evolução Biológica , Genoma Mitocondrial , Filogenia , Tartarugas/classificação , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Funções Verossimilhança , Modelos Genéticos , Filogeografia , Análise de Sequência de DNA , Tartarugas/genética
11.
Ecol Appl ; 22(3): 735-47, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22645807

RESUMO

Interactions with fisheries are believed to be a major cause of mortality for adult leatherback turtles (Dermochelys coriacea), which is of particular concern in the Pacific Ocean, where they have been rapidly declining. In order to identify where these interactions are occurring and how they may be reduced, it is essential first to understand the movements and behavior of leatherback turtles. There are two regional nesting populations in the East Pacific (EP) and West Pacific (WP), comprising multiple nesting sites. We synthesized tracking data from the two populations and compared their movement patterns. A switching state-space model was applied to 135 Argos satellite tracks to account for observation error, and to distinguish between migratory and area-restricted search behaviors. The tracking data, from the largest leatherback data set ever assembled, indicated that there was a high degree of spatial segregation between EP and WP leatherbacks. Area-restricted search behavior mainly occurred in the southeast Pacific for the EP leatherbacks, whereas the WP leatherbacks had several different search areas in the California Current, central North Pacific, South China Sea, off eastern Indonesia, and off southeastern Australia. We also extracted remotely sensed oceanographic data and applied a generalized linear mixed model to determine if leatherbacks exhibited different behavior in relation to environmental variables. For the WP population, the probability of area-restricted search behavior was positively correlated with chlorophyll-a concentration. This response was less strong in the EP population, but these turtles had a higher probability of search behavior where there was greater Ekman upwelling, which may increase the transport of nutrients and consequently prey availability. These divergent responses to oceanographic conditions have implications for leatherback vulnerability to fisheries interactions and to the effects of climate change. The occurrence of leatherback turtles within both coastal and pelagic areas means they have a high risk of exposure to many different fisheries, which may be very distant from their nesting sites. The EP leatherbacks have more limited foraging grounds than the WP leatherbacks, which could make them more susceptible to any temperature or prey changes that occur in response to climate change.


Assuntos
Migração Animal/fisiologia , Ecossistema , Monitoramento Ambiental/métodos , Tartarugas , Sistemas de Identificação Animal , Animais , Conservação dos Recursos Naturais , Comportamento Alimentar , Modelos Biológicos , Comportamento de Nidação , Oceano Pacífico , Densidade Demográfica , Estações do Ano , Fatores de Tempo
12.
J Hered ; 103(6): 806-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23045611

RESUMO

Management of the critically endangered hawksbill turtle in the Wider Caribbean (WC) has been hampered by knowledge gaps regarding stock structure. We carried out a comprehensive stock structure re-assessment of 11 WC hawksbill rookeries using longer mtDNA sequences, larger sample sizes (N = 647), and additional rookeries compared to previous surveys. Additional variation detected by 740 bp sequences between populations allowed us to differentiate populations such as Barbados-Windward and Guadeloupe (F (st) = 0.683, P < 0.05) that appeared genetically indistinguishable based on shorter 380 bp sequences. POWSIM analysis showed that longer sequences improved power to detect population structure and that when N < 30, increasing the variation detected was as effective in increasing power as increasing sample size. Geographic patterns of genetic variation suggest a model of periodic long-distance colonization coupled with region-wide dispersal and subsequent secondary contact within the WC. Mismatch analysis results for individual clades suggest a general population expansion in the WC following a historic bottleneck about 100 000-300 000 years ago. We estimated an effective female population size (N (ef)) of 6000-9000 for the WC, similar to the current estimated numbers of breeding females, highlighting the importance of these regional rookeries to maintaining genetic diversity in hawksbills. Our results provide a basis for standardizing future work to 740 bp sequence reads and establish a more complete baseline for determining stock boundaries in this migratory marine species. Finally, our findings illustrate the value of maintaining an archive of specimens for re-analysis as new markers become available.


Assuntos
DNA Mitocondrial , Variação Genética , Genética Populacional , Tartarugas/genética , Animais , Barbados , Região do Caribe , Espécies em Perigo de Extinção , Feminino , Guadalupe , Haplótipos , Modelos Genéticos , Filogenia , Filogeografia , Polimorfismo Genético , Densidade Demográfica
13.
Ecol Evol ; 12(11): e9548, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447590

RESUMO

Conservation of green sea turtles (Chelonia mydas) benefits from knowledge of population connectivity across life stages. Green turtles are managed at the level of genetically discrete rookeries, yet individuals from different rookeries mix at foraging grounds; therefore, rookeries may be impacted by processes at foraging grounds. Bimini, Bahamas, hosts an important foraging assemblage, but rookery contributions to this assemblage have never been resolved. We generated mitochondrial DNA sequences for 96 foraging green turtles from Bimini and used Mixed Stock Analysis to determine rookery contributions to this population using 817 and 490 base pair (bp) rookery baseline data. The MSA conducted with 817 bp data indicated that Quintana Roo, Mexico, and Central Eastern Florida contributed most to the Bimini population. The MSA conducted with 490 bp data indicated that Southwest Cuba and Central Eastern Florida contributed the most to Bimini. The results of the second MSA differ from a previous study undertaken with 490 bp data, conducted in Great Inagua, Bahamas, which suggested that Tortuguero, Costa Rica, contributed the most to that foraging assemblage. Large credible intervals in our results do not permit explicit interpretation of individual rookery contributions, but our results do indicate substantial relative differences in rookery contributions to two Bahamian foraging assemblages which may be driven by oceanic currents, rookery sizes, and possibly juvenile natal homing. Our findings may implicate a shift in contributions to the Bahamas over two decades, highlighting the importance of regularly monitoring rookery contributions and resolving regional recruitment patterns to inform conservation.

14.
J Hered ; 100(3): 390-3, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19074754

RESUMO

The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Polimorfismo de Nucleotídeo Único/genética , Tartarugas/genética , Animais , Sequência de Bases , DNA/química , Dados de Sequência Molecular
15.
Sci Rep ; 9(1): 3150, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816199

RESUMO

In this study we assessed the breeding population, or Management Unit (MU), origin of green turtles (Chelonia mydas) present at Yadua Island and Makogai Island foraging grounds in Fiji, central South Pacific. Based on analysis of mitochondrial (mt) DNA sequences from 150 immature green turtles caught during surveys carried out in 2015-2016, we identified a total of 18 haplotypes, the most common being CmP22.1 (44%) which is a primary haplotype characterizing the American Samoa breeding population. Results of a Bayesian mixed-stock analysis reveals that the two foraging grounds are used by green turtles from the American Samoa MU (72%, Credible Interval (CI): 56-87%), New Caledonia MU (17%, CI: 6-26%) and French Polynesia MU (7%, CI: 0-23%). The prominence of the contribution we found from the American Samoa MU compared to that of French Polynesia, both which have historic telemetry and tagging data showing connectivity with Fijian foraging areas, may reflect the current relative abundance of these two nesting populations and draws attention to a need to update population surveys and identify any significant nesting in Fiji that may have been overlooked.


Assuntos
Cruzamento , Genética Populacional , Tartarugas/genética , Samoa Americana , Migração Animal/fisiologia , Animais , DNA Mitocondrial/genética , Fiji , Haplótipos/genética , Humanos , Comportamento de Nidação/fisiologia , Nova Caledônia , Polinésia , Telemetria
16.
Mol Ecol Resour ; 19(2): 497-511, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30576074

RESUMO

Advances in high-throughput sequencing (HTS) technologies coupled with increased interdisciplinary collaboration are rapidly expanding capacity in the scope and scale of wildlife genetic studies. While existing HTS methods can be directly applied to address some evolutionary and ecological questions, certain research goals necessitate tailoring methods to specific study organisms, such as high-throughput genotyping of the same loci that are comparable over large spatial and temporal scales. These needs are particularly common for studies of highly mobile species of conservation concern like marine turtles, where life history traits, limited financial resources and other constraints require affordable, adaptable methods for HTS genotyping to meet a variety of study goals. Here, we present a versatile marine turtle HTS targeted enrichment platform adapted from the recently developed Rapture (RAD-Capture) method specifically designed to meet these research needs. Our results demonstrate consistent enrichment of targeted regions throughout the genome and discovery of candidate variants in all species examined for use in various conservation genetics applications. Accurate species identification confirmed the ability of our platform to genotype over 1,000 multiplexed samples and identified areas for future methodological improvement such as optimization for low initial concentration samples. Finally, analyses within green turtles supported the ability of this platform to identify informative SNPs for stock structure, population assignment and other applications over a broad geographic range of interest to management. This platform provides an additional tool for marine turtle genetic studies and broadens capacity for future large-scale initiatives such as collaborative global marine turtle genetic databases.


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Técnicas de Genotipagem/métodos , Tartarugas/classificação , Tartarugas/genética , Animais , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único
17.
Trends Ecol Evol ; 34(5): 459-473, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30879872

RESUMO

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Ecossistema
18.
Curr Biol ; 28(1): 154-159.e4, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316410

RESUMO

Climate change affects species and ecosystems around the globe [1]. The impacts of rising temperature are particularly pertinent in species with temperature-dependent sex determination (TSD), where the sex of an individual is determined by incubation temperature during embryonic development [2]. In sea turtles, the proportion of female hatchlings increases with the incubation temperature. With average global temperature predicted to increase 2.6°C by 2100 [3], many sea turtle populations are in danger of high egg mortality and female-only offspring production. Unfortunately, determining the sex ratios of hatchlings at nesting beaches carries both logistical and ethical complications. However, sex ratio data obtained at foraging grounds provides information on the amalgamation of immature and adult turtles hatched from different nesting beaches over many years. Here, for the first time, we use genetic markers and a mixed-stock analysis (MSA), combined with sex determination through laparoscopy and endocrinology, to link male and female green turtles foraging in the Great Barrier Reef (GBR) to the nesting beach from which they hatched. Our results show a moderate female sex bias (65%-69% female) in turtles originating from the cooler southern GBR nesting beaches, while turtles originating from warmer northern GBR nesting beaches were extremely female-biased (99.1% of juvenile, 99.8% of subadult, and 86.8% of adult-sized turtles). Combining our results with temperature data show that the northern GBR green turtle rookeries have been producing primarily females for more than two decades and that the complete feminization of this population is possible in the near future.


Assuntos
Mudança Climática , Temperatura Alta/efeitos adversos , Comportamento de Nidação , Razão de Masculinidade , Tartarugas/fisiologia , Animais , Masculino , Queensland , Processos de Determinação Sexual
19.
Nat Ecol Evol ; 2(10): 1571-1578, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30177802

RESUMO

During their migrations, marine predators experience varying levels of protection and face many threats as they travel through multiple countries' jurisdictions and across ocean basins. Some populations are declining rapidly. Contributing to such declines is a failure of some international agreements to ensure effective cooperation by the stakeholders responsible for managing species throughout their ranges, including in the high seas, a global commons. Here we use biologging data from marine predators to provide quantitative measures with great potential to inform local, national and international management efforts in the Pacific Ocean. We synthesized a large tracking data set to show how the movements and migratory phenology of 1,648 individuals representing 14 species-from leatherback turtles to white sharks-relate to the geopolitical boundaries of the Pacific Ocean throughout species' annual cycles. Cumulatively, these species visited 86% of Pacific Ocean countries and some spent three-quarters of their annual cycles in the high seas. With our results, we offer answers to questions posed when designing international strategies for managing migratory species.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Cooperação Internacional , Oceanos e Mares , Oceano Pacífico
20.
PLoS One ; 12(3): e0174248, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319178

RESUMO

Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM) were used to define inter-nesting habitat of endangered Kemp's ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60); Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11); and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11). These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp's ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it.


Assuntos
Migração Animal , Ecossistema , Comportamento de Nidação , Tartarugas , Animais , Feminino , Golfo do México , Comportamento de Retorno ao Território Vital , México , Atividade Motora , Telemetria , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA