Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(1): 25-40, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995976

RESUMO

Obesity and diabetes affect more than half a billion individuals worldwide. Interestingly, the two conditions do not always coincide and the molecular determinants of "healthy" versus "unhealthy" obesity remain ill-defined. Chronic metabolic inflammation (metaflammation) is believed to be pivotal. Here, we tested a hypothesized anti-inflammatory role for heme oxygenase-1 (HO-1) in the development of metabolic disease. Surprisingly, in matched biopsies from "healthy" versus insulin-resistant obese subjects we find HO-1 to be among the strongest positive predictors of metabolic disease in humans. We find that hepatocyte and macrophage conditional HO-1 deletion in mice evokes resistance to diet-induced insulin resistance and inflammation, dramatically reducing secondary disease such as steatosis and liver toxicity. Intriguingly, cellular assays show that HO-1 defines prestimulation thresholds for inflammatory skewing and NF-κB amplification in macrophages and for insulin signaling in hepatocytes. These findings identify HO-1 inhibition as a potential therapeutic strategy for metabolic disease.


Assuntos
Heme Oxigenase-1/metabolismo , Resistência à Insulina , Proteínas de Membrana/metabolismo , Obesidade/complicações , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Hepatócitos/metabolismo , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Camundongos , Camundongos Knockout , Obesidade/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
2.
Cytokine ; 124: 154577, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30446215

RESUMO

An excessive inflammatory response is frequently associated with cellular dysfunction and cell death. The latter may cause single and multiple organ failure. The most susceptible organs are liver, lung, kidney, heart and intestine. This review will focus on the liver as a target organ for an excessive inflammatory response. It is commonly accepted that organ failure is caused by the action of inflammatory cytokines released in excess during the inflammatory response. It has been suggested that inflammation mediated liver failure is not due to an increased death rate of parenchymal cells, but due to an intracellular metabolic disorder. This metabolic disorder is associated with mitochondrial and endoplasmic reticulum (ER) dysfunction during the acute phase response elicited by systemic inflammation. An overproduction of acute phase proteins in the liver as well as elevated reactive oxygen species (ROS) generation induce ER stress, triggering the unfolded protein response (UPR), which may initiate or aggravate inflammation. It is known that certain inflammatory mediators, such as the pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α induce ER stress. These findings suggest that ER stress and the subsequent UPR on the one hand, and the inflammatory response on the other create a kind of feed forward loop, which can be either beneficial (e.g., elimination of the pathogen and restoration of tissue homeostasis) or deleterious (e.g., excessive cell dysfunction and cell death). This review aims to unfurl the different pathways contributing to this loop and to highlight the relevance of UPR signaling (IRE1α, ATF6, and PERK) and mediators of the inflammatory response (NF-κB, STAT3, IL-1ß, IL-6, TLR) which have a particular role as pathophysiological triggers in the liver.


Assuntos
Estresse do Retículo Endoplasmático/genética , Mediadores da Inflamação/metabolismo , Hepatopatias/metabolismo , Fígado/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Citocinas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fígado/fisiologia , Hepatopatias/tratamento farmacológico , Hepatopatias/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia
3.
BMC Vet Res ; 13(1): 64, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245826

RESUMO

BACKGROUND: Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. RESULTS: Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. CONCLUSIONS: In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression was detectable during the acute stage of infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/metabolismo , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/imunologia , Actinobacillus pleuropneumoniae/isolamento & purificação , Actinobacillus pleuropneumoniae/metabolismo , Animais , Citocinas/metabolismo , Pleuropneumonia/imunologia , Pleuropneumonia/metabolismo , Pleuropneumonia/microbiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Transcriptoma
4.
Vet Res ; 44: 18, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23497134

RESUMO

Differentiation of porcine T helper cells is still poorly investigated, partly due to a lack of monoclonal antibodies (mAbs) specific for molecules involved in this process. Recently, we identified a mAb specific for porcine CD27 and showed that CD27 is expressed by all naïve CD8α- T helper cells but divides CD8α+ T helper cells into a CD27+ and a CD27- subset. In the present study, detailed phenotypical and functional analyses of these T-helper cell subpopulations were performed. Naïve CD8α-CD27+ T helper cells predominantly resided in various lymph nodes, whereas higher proportions of CD8α+CD27+ and CD8α+CD27- T helper cells were found in blood, spleen and liver. Both CD8α+CD27+ and CD8α+CD27- T helper cells were capable of producing IFN-γ upon in vitro polyclonal stimulation and antigen-specific restimulation. Experiments with sorted CD8α-CD27+, CD8α+CD27+ and CD8α+CD27- T-helper cell subsets following polyclonal stimulation revealed the lowest proliferative response but the highest ability for IFN-γ and TNF-α production in the CD8α+CD27- subset. Therefore, these cells resembled terminally differentiated effector memory cells as described in human. This was supported by analyses of CCR7 and CD62L expression. CD8α+CD27- T helper cells were mostly CCR7- and had considerably reduced CD62L mRNA levels. In contrast, expression of both homing-receptors was increased on CD8α+CD27+ T helper cells, which also had a proliferation rate similar to naïve CD8α-CD27+ T helper cells and showed intermediate levels of cytokine production. Therefore, similar to human, CD8α+CD27+ T helper cells displayed a phenotype and functional properties of central memory cells.


Assuntos
Ativação Linfocitária , Sus scrofa/imunologia , Linfócitos T/citologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Diferenciação Celular , Dados de Sequência Molecular , Alinhamento de Sequência/veterinária , Análise de Sequência de Proteína/veterinária , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/química , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
5.
Vet Res ; 44: 13, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23452562

RESUMO

Natural Killer (NK) cells play a crucial role in the early phase of immune responses against various pathogens. In swine so far only little information about this lymphocyte population exists. Phenotypical analyses with newly developed monoclonal antibodies (mAbs) against porcine NKp46 recently revealed that in blood NKp46- and NKp46+ cells with NK phenotype exist with comparable cytotoxic properties. In spleen a third NKp46-defined population with NK phenotype was observed that was characterised by a low to negative CD8α and increased NKp46 expression. In the current study it is shown that this NKp46high phenotype was correlated with an increased expression of CD16 and CD27 compared to the CD8α+NKp46- and NKp46+ NK-cell subsets in spleen and blood. Additionally NKp46high NK cells expressed elevated levels of the chemokine receptor CXCR3 on mRNA level. Functional analyses revealed that splenic NKp46high NK cells produced much higher levels of Interferon-γ and Tumor Necrosis Factor-α upon stimulation with cytokines or phorbol-12-myristate-13-acetate/Ionomycin compared to the other two subsets. Furthermore, cross-linking of NKp46 by NKp46-specific mAbs led to a superior CD107a expression in the NKp46high NK cells, thus indicating a higher cytolytic capacity of this subset. Therefore porcine splenic NKp46high NK cells represent a highly activated subset of NK cells and may play a profound role in the immune surveillance of this organ.


Assuntos
Regulação da Expressão Gênica , Linfócitos/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Baço/imunologia , Sus scrofa/imunologia , Animais , Antígenos CD8/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Interferon gama/genética , Interferon gama/metabolismo , Ionomicina/farmacologia , Ésteres de Forbol/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
6.
Redox Biol ; 62: 102669, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933393

RESUMO

Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.


Assuntos
Ácido Glutâmico , Complexo Cetoglutarato Desidrogenase , Ratos , Animais , Ácido Glutâmico/metabolismo , Estudos Retrospectivos , Citoplasma/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Tiamina/metabolismo , Tiamina/farmacologia , Óxido Nítrico/metabolismo
7.
Am J Physiol Gastrointest Liver Physiol ; 303(12): G1373-83, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23064756

RESUMO

It is well known that systemic inflammatory response (SIR) often causes liver dysfunction. The aim of this study was to identify the intracellular compartment in the liver most susceptible to SIR. We analyzed morphology, ultrastructure, proteome, and expression of relevant genes in livers of rats subjected to endotoxic shock. Histological examination revealed that focal necrosis in liver was insignificant to explain liver dysfunction. Electron microscopy revealed no morphological changes in the mitochondrial structure and in the cytosol, but dilated endoplasmic reticulum (ER) cisterns were frequently observed. Apoptosis was found in white blood cells within liver tissue but not in hepatocytes. Mitochondrial, ER, and cytosolic fractions were subjected to proteome analysis by difference gel electrophoresis, and the protein spots with the highest degree of differential regulation were identified with mass spectrometry. The most pronounced proteome changes appeared in the ER, manifested as a remarkable downregulation of several proteins essential for ER functions, such as protein synthesis and transport, whereas the changes in mitochondrial and cytosolic fractions suggested a compensatory response. ER stress, as an underlying mechanism for ER impairment, was confirmed by analysis of upstream (splicing X-box-binding protein 1 mRNA) and downstream (e.g., 78-kDa glucose-regulated protein mRNA) markers, suggesting ongoing unresolved ER stress as a cause for ER dilation. Because ER is the intracellular compartment responsible for the major liver functions, our data suggest that inflammatory mediators induce unresolved ER stress, resulting in the biochemical, functional, and morphological impairment of ER that in turn causes liver dysfunction. The pathway activating ER stress in response to SIR is not known yet.


Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Hepatite/metabolismo , Fígado/metabolismo , Fígado/patologia , Proteoma/metabolismo , Animais , Apoptose , Masculino , Ratos , Ratos Sprague-Dawley , Síndrome de Resposta Inflamatória Sistêmica
8.
Biochim Biophys Acta ; 1792(6): 521-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19327397

RESUMO

Inflammatory response has recently been shown to induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which either recovers proper ER function or activates apoptosis. Here we show that endotoxin (lipopolysaccharide = LPS) can lead to functional ER failure tentatively via a mitochondrion-dependent pathway in livers of rats. Histological examination did not reveal significant damage to liver in form of necroses. Electron microscopy displayed transparent rings appearing around morphologically unchanged mitochondria, which were identified as dilated ER. The spliced mRNA variant of X-box protein-1 (XBP1) and also the mRNA of 78 kDa glucose-regulated protein (GRP78) were up-regulated, both typical markers of ER stress. However, GRP78 was down-regulated at the protein level. A pro-apoptotic shift in the bax/bcl-XL mRNA ratio was not accompanied by translocation of apoptosis inducing factor (AIF) to the nucleus, suggesting that the cells entered a pre-apoptotic state, but apoptosis was not executed. Monooxygenase activity of p450, representing the detoxification system in ER, was decreased after administration of endotoxin. Biochemical analysis of proteins important for ER function revealed the impairment of protein folding, transport, and detoxification suggesting functional ER failure. We suggest that functional ER failure may be a reason for organ dysfunction upon excessive inflammatory response mediated by endotoxin.


Assuntos
Retículo Endoplasmático/fisiologia , Inflamação/fisiopatologia , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Mitocôndrias/fisiologia , Dobramento de Proteína , Animais , Expressão Gênica , Inflamação/patologia , Fígado/patologia , Masculino , Modelos Biológicos , Estresse Oxidativo , Transporte Proteico , Ratos
9.
Mol Med ; 16(7-8): 254-61, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20379612

RESUMO

Trauma-hemorrhage (T-H) is known to impair tissue perfusion, leading to tissue hypoxia, and thus affecting mitochondria, the organelles with the highest oxygen demand. In a model of T-H and prolonged hypotension without fluid resuscitation, administration of a small volume of 17beta-estradiol (E2), but not vehicle, prolonged the survival of rats for 3 h, even in the absence of fluid resuscitation. The main finding of this study is that T-H followed by prolonged hypotension significantly affects mitochondrial function, endoplasmic reticulum (ER) stress markers and free iron levels, and that E2 ameliorated all these changes. All of these changes were observed in the liver but not in the kidney. The sensitivity of mitochondrial respiration to exogenous cytochrome c can reflect increased permeability of the outer mitochondrial membrane for cytochrome c. Increased levels of free iron are indicative of oxidative stress, but neither oxidative nor nitrosylative stress markers changed. The spliced isoform of XBP1 mRNA (an early marker of ER stress) and the expression of C/EBP homologous protein (CHOP) (a protein regulating ER stress-induced apoptosis) were elevated in T-H animals but remained unchanged if T-H rats received E2. Both the prevention of elevated sensitivity of mitochondrial respiration to cytochrome c and a decrease in ER stress by E2 maintain functional integrity of the liver and may help the organ during prolonged hypotension and following resuscitation. A decrease in free iron levels by E2 is more relevant for resuscitation, often accompanied by oxidative stress reaction. Thus, E2 appears to be a novel hormonal adjunct that prolongs permissive hypotension during lengthy transportation of the injured patient between the injury site and the hospital in both civilian and military injuries.


Assuntos
Estradiol/farmacologia , Expressão Gênica/efeitos dos fármacos , Hemorragia/metabolismo , Hipotensão/metabolismo , Rim/metabolismo , Fígado/metabolismo , Mitocôndrias/fisiologia , Animais , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipotensão/induzido quimicamente , Inflamação/metabolismo , Ferro/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Malatos/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição de Fator Regulador X , Respiração/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
10.
Eur Child Adolesc Psychiatry ; 19(5): 441-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19894076

RESUMO

Searching for a peripheral biological marker for schizophrenia, we previously reported on elevated mitochondrial complex I 75-kDa subunit mRNA-blood concentrations in early onset schizophrenia (EOS). The aim of this study was to further evaluate the utility of this gene as a potential marker for schizophrenia. Both-schizophrenia and autism-are suggested to be neuronal maldevelopmental disorders with reports of mitochondrial dysfunction and increased oxidative stress. Therefore we have investigated the expression levels of mitochondrial complex I 75-kDa subunit mRNA in whole blood of children with autistic spectrum disorder (ASD) and a group of adolescent acute first-episode EOS patients in comparison to matched controls. We have found that compared to the respective controls only the group of EOS patients-and not the ASD group-showed a significantly altered expression of the complex I 75-kDa subunit mRNA. Although further studies are necessary to test for the specificity of this marker, our findings point to the potential use of the mitochondrial complex I as a biomarker for schizophrenia.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/sangue , Complexo I de Transporte de Elétrons/sangue , Esquizofrenia/sangue , Adolescente , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Transtornos Globais do Desenvolvimento Infantil/genética , Complexo I de Transporte de Elétrons/biossíntese , Complexo I de Transporte de Elétrons/genética , Feminino , Expressão Gênica/genética , Humanos , Masculino , Escalas de Graduação Psiquiátrica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/genética
11.
Antioxidants (Basel) ; 8(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614577

RESUMO

The heme oxygenase (HO) system is essential for heme and iron homeostasis and necessary for adaptation to cell stress. HO degrades heme to biliverdin (BV), carbon monoxide (CO) and ferrous iron. Although mostly beneficial, the HO reaction can also produce deleterious effects, predominantly attributed to excessive product formation. Underrated so far is, however, that HO may exert effects additionally via modulation of the cellular heme levels. Heme, besides being an often-quoted generator of oxidative stress, plays also an important role as a signaling molecule. Heme controls the anti-oxidative defense, circadian rhythms, activity of ion channels, glucose utilization, erythropoiesis, and macrophage function. This broad spectrum of effects depends on its interaction with proteins ranging from transcription factors to enzymes. In degrading heme, HO has the potential to exert effects also via modulation of heme-mediated pathways. In this review, we will discuss the multitude of pathways regulated by heme to enlarge the view on HO and its role in cell physiology. We will further highlight the contribution of HO to pathophysiology, which results from a dysregulated balance between heme and the degradation products formed by HO.

12.
Lab Invest ; 88(1): 70-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17982471

RESUMO

Mitochondria are involved in the development of organ failure in critical care diseases. However, the mechanisms underlying mitochondrial dysfunction are not clear yet. Inducible hemoxygenase (HO-1), a member of the heat shock protein family, is upregulated in critical care diseases and considered to confer cytoprotection against oxidative stress. However, one of the products of HO-1 is Fe2+ which multiplies the damaging potential of reactive oxygen species catalyzing Fenton reaction. The aim of this study was to clarify the relevance of free iron metabolism to the oxidative damage of the liver in endotoxic shock and its impact on mitochondrial function. Endotoxic shock in rats was induced by injection of lipopolysaccharide (LPS) at a dose of 8 mg/kg (i.v.). We observed that the pro-inflammatory cytokine TNF-alpha and the liver necrosis marker aspartate aminotransferase were increased in blood, confirming inflammatory response to LPS and damage to liver tissue, respectively. The levels of free iron in the liver were significantly increased at 4 and 8 h after onset of endotoxic shock, which did not coincide with the decrease of transferrin iron levels in the blood, but rather with expression of the inducible form of heme oxygenase (HO-1). The proteins important for sequestering free iron (ferritin) and the export of iron out of the cells (ferroportin) were downregulated facilitating the accumulation of free iron in cells. The temporarily increased concentration of free iron in the liver correlated with the temporary impairment of both mitochondrial function and tissue ATP levels. Addition of exogenous iron ions to mitochondria isolated from control animals resulted in an impairment of mitochondrial respiration similar to that observed in endotoxic shock in vivo. Our data suggest that free iron released by HO-1 causes mitochondrial dysfunction in pathological situations accompanied by endotoxic shock.


Assuntos
Endotoxinas/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Ferro/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Perfilação da Expressão Gênica , Ferro/farmacologia , Lipopolissacarídeos/toxicidade , Masculino , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/fisiologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
13.
JPEN J Parenter Enteral Nutr ; 42(6): 1061-1074, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29338093

RESUMO

BACKGROUND: Experimental data indicate that sepsis influences the mitochondrial function and metabolism. We aim to investigate longitudinal bioenergetic, metabolic, hormonal, amino-acid, and innate immunity changes in children with sepsis. METHODS: Sixty-eight children (sepsis, 18; systemic inflammatory response syndrome [SIRS], 23; healthy controls, 27) were enrolled. Plasma amino acids were determined by high-performance liquid chromatography (HPLC); flow-cytometry expressed as mean fluorescence intensity (MFI) of heat shock protein (HSP) levels from monocytes (m) and neutrophils (n); resistin, adiponectin, and extracellular (e) HSPs evaluated by ELISA; ATP levels in white blood cells by luciferase luminescent assay; lipid peroxidation products (TBARS) by colorimetric test; nitrite and nitrate levels by chemiluminescent assay; biliverdin reductase (BVR) activity by enzymatic assay; and energy-expenditure (EE) by E-COVX. RESULTS: Resistin, eHSP72, eHSP90α, and nitrate were longitudinally higher in sepsis compared with SIRS (p<0.05); mHSP72, nHSP72, VO2 , VCO2 , EE, and metabolic pattern were repressed in sepsis compared with SIRS (p<0.05). Septic patients had lower ATP and TBARS compared with controls on day 1, lower ATP compared with SIRS on day 3 (p<0.05), but higher levels of BVR activity. Sepsis exhibited higher phenylalanine levels on day 1, serine on day 3; lower glutamine concentrations on days 3 and 5 (p<0.05). Resistin, inversely related to ATP, was independently associated with sepsis, along with mHSP72 and eHSP90α (p<0.05); TBARS and VO2 were independently associated with organ failure (p<0.05)). Septic nonsurvivors had malnutrition, persistently repressed metabolism, mHSP72, and induced resistin and adiponectin (p<0.05). CONCLUSIONS: A pattern of early longitudinal induction of metabolic-hormones and eHSP72/HSP90α, repression of bioenergetics and innate immunity, hypo-metabolism, and amino-acid kinetics changes discriminate sepsis from SIRS; malnutrition, hypo-metabolism, and persistently increased resistin and adiponectin are associated with poor outcome.


Assuntos
Aminoácidos/metabolismo , Imunidade Inata/imunologia , Inflamação/imunologia , Resistina/imunologia , Sepse/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Inflamação/metabolismo , Cinética , Masculino , Estudos Prospectivos , Sepse/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia
14.
Vet Immunol Immunopathol ; 205: 17-23, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30458998

RESUMO

Actinobacillus pleuropneumoniae (APP) persisting in clinically healthy pigs may be the causative agent of sudden outbreaks of severe respiratory disease in swine herds. During the course of acute disease, the pathogen is eliminated from inflamed lung tissue, which is characterized by the expression of pro-inflammatory cytokines and an influx of neutrophils. However, if clearance by the porcine immune system fails, APP may switch to a persistent form. At later stages of infection, the pathogen may reside in tonsillar tissue without being eliminated by the host immune defence. To better understand the host immune response at different stages of infection, expression pattern of cytokines in tonsils and lung were recorded. In contrast to lung tissue, in which APP presence was associated with a pronounced pro-inflammatory character, APP presence in the tonsils elicited an increased IL-10 expression. In both organs of infected animals, a marked reciprocal correlation of the pro-inflammatory IL-17A and the anti-inflammatory IL-10 was found, supporting the idea that both cytokines are produced in highly associated, but reciprocal differentiated cell types, possibly APP-specific Th17 subsets. It appears that a persistent phenotype of APP triggers the anti-inflammatory immune response in tonsillar tissue in an attempt to evade the porcine immune defence.


Assuntos
Infecções por Actinobacillus/veterinária , Interleucina-10/imunologia , Tonsila Palatina/imunologia , Tonsila Palatina/microbiologia , Doenças dos Suínos/imunologia , Infecções por Actinobacillus/imunologia , Actinobacillus pleuropneumoniae , Animais , Citocinas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Interleucina-17/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Células Th17
15.
Front Med (Lausanne) ; 4: 223, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312941

RESUMO

The outcome of patients with critical care diseases (CCD) such as sepsis, hemorrhagic shock, or trauma is often associated with mitochondrial dysfunction. In turn, mitochondrial dysfunction is frequently induced upon interaction with nitric oxide (NO) and carbon monoxide (CO), two gaseous messengers formed in the body by NO synthase (NOS) and heme oxygenase (HO), respectively. Both, NOS and HO are upregulated in the majority of CCD. A multitude of factors that are associated with the pathology of CCD exert a potential to interfere with mitochondrial function or the effects of the gaseous messengers. From these, four major factors can be identified that directly influence the effects of NO and CO on mitochondria and which are defined by (i) local concentration of NO and/or CO, (ii) tissue oxygenation, (iii) redox status of cells in terms of facilitating or inhibiting reactive oxygen species formation, and (iv) the degree of tissue acidosis. The combination of these four factors in specific pathological situations defines whether effects of NO and CO are beneficial or deleterious.

16.
Front Med (Lausanne) ; 4: 252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29404326

RESUMO

BACKGROUND: Macrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis. AIM: The aim of this study is to understand whether heme oxygenase (HO) and nitric oxide synthase (NOS) contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity and phagocytosis, two key components of macrophage function. METHODS: This study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS) formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance. RESULTS: We show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme. CONCLUSION: Both enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

17.
Sci Rep ; 7: 40881, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102348

RESUMO

Excessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors, however, the underlying molecular mechanisms remain unclear. Here, we used an unbiased transcriptomics approach to identify the earliest molecular underpinnings occuring in adipose precursors following a brief HFD in mice. Our analysis identifies Heme Oxygenase-1 (HO-1) as strongly and selectively being upregulated in the adipose precursor fraction of WAT, upon high-fat diet (HFD) feeding. Specific deletion of HO-1 in adipose precursors of Hmox1fl/flPdgfraCre mice enhanced HFD-dependent visceral adipose precursor proliferation and differentiation. Mechanistically, HO-1 reduces HFD-induced AKT2 phosphorylation via ROS thresholding in mitochondria to reduce visceral adipose precursor proliferation. HO-1 influences adipogenesis in a cell-autonomous way by regulating events early in adipogenesis, during the process of mitotic clonal expansion, upstream of Cebpα and PPARγ. Similar effects on human preadipocyte proliferation and differentiation in vitro were observed upon modulation of HO-1 expression. This collectively renders HO-1 as an essential factor linking extrinsic factors (HFD) with inhibition of specific downstream molecular mediators (ROS &AKT2), resulting in diminished adipogenesis that may contribute to hyperplastic adipose tissue expansion.


Assuntos
Diferenciação Celular , Proliferação de Células , Heme Oxigenase-1/metabolismo , Obesidade/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dieta Hiperlipídica , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , PPAR gama/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Front Immunol ; 7: 263, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471504

RESUMO

The CD3(-)NKp46(+) phenotype is frequently used for the identification of natural killer (NK) cells in various mammalian species. Recently, NKp46 expression was analyzed in more detail in swine. It could be shown that besides CD3(-)NKp46(+) lymphocytes, a small but distinct population of CD3(+)NKp46(+) cells exists. In this study, we report low frequencies of CD3(+)NKp46(+) lymphocytes in blood, lymph nodes, and spleen, but increased frequencies in non-lymphatic organs, like liver and lung. Phenotypic analyses showed that the majority of CD3(+)NKp46(+) cells coexpressed the CD8αß heterodimer, while a minor subset expressed the TCR-γδ, which was associated with a CD8αα(+) phenotype. Despite these T-cell associated receptors, the majority of CD3(+)NKp46(+) lymphocytes displayed a NK-related phenotype (CD2(+)CD5(-)CD6(-)CD16(+)perforin(+)) and expressed mRNA of NKp30, NKp44, and NKG2D at similar levels as NK cells. Functional tests showed that CD3(+)NKp46(+) lymphocytes produced IFN-γ and proliferated upon cytokine stimulation to a similar extent as NK cells, but did not respond to the T-cell mitogen, ConA. Likewise, CD3(+)NKp46(+) cells killed K562 cells with an efficiency comparable to NK cells. Cross-linking of NKp46 and CD3 led to degranulation of CD3(+)NKp46(+) cells, indicating functional signaling pathways for both receptors. Additionally, influenza A(H1N1)pdm09-infected pigs had reduced frequencies of CD3(+)NKp46(+) lymphocytes in blood, but increased frequencies in the lung in the early phase of infection. Thus, CD3(+)NKp46(+) cells appear to be involved in the early phase of influenza infections. In summary, we describe a lymphocyte population in swine with a mixed phenotype of NK and T cells, with results so far indicating that this cell population functionally resembles NK cells.

19.
Biomolecules ; 5(2): 679-701, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25942605

RESUMO

Heme oxygenase (HO), in conjunction with biliverdin reductase, degrades heme to carbon monoxide, ferrous iron and bilirubin (BR); the latter is a potent antioxidant. The induced isoform HO-1 has evoked intense research interest, especially because it manifests anti-inflammatory and anti-apoptotic effects relieving acute cell stress. The mechanisms by which HO mediates the described effects are not completely clear. However, the degradation of heme, a strong pro-oxidant, and the generation of BR are considered to play key roles. The aim of this study was to determine the effects of BR on vital functions of hepatocytes focusing on mitochondria and the endoplasmic reticulum (ER). The affinity of BR to proteins is a known challenge for its exact quantification. We consider two major consequences of this affinity, namely possible analytical errors in the determination of HO activity, and biological effects of BR due to direct interaction with protein function. In order to overcome analytical bias we applied a polynomial correction accounting for the loss of BR due to its adsorption to proteins. To identify potential intracellular targets of BR we used an in vitro approach involving hepatocytes and isolated mitochondria. After verification that the hepatocytes possess HO activity at a similar level as liver tissue by using our improved post-extraction spectroscopic assay, we elucidated the effects of increased HO activity and the formed BR on mitochondrial function and the ER stress response. Our data show that BR may compromise cellular metabolism and proliferation via induction of ER stress. ER and mitochondria respond differently to elevated levels of BR and HO-activity. Mitochondria are susceptible to hemin, but active HO protects them against hemin-induced toxicity. BR at slightly elevated levels induces a stress response at the ER, resulting in a decreased proliferative and metabolic activity of hepatocytes. However, the proteins that are targeted by BR still have to be identified.


Assuntos
Bilirrubina/metabolismo , Estresse do Retículo Endoplasmático , Heme Oxigenase (Desciclizante)/metabolismo , Hemina/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Hepatócitos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
20.
Antioxid Redox Signal ; 22(7): 572-86, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25365698

RESUMO

AIMS: Increasing evidences suggest that, apart from activation of guanylyl cyclase, intracellular nitric oxide (NO) signaling is associated with an interaction between NO and reactive oxygen species (ROS) to modulate physiological or pathophysiological processes. The aim of this study was to understand the contribution of mitochondrial ROS (mtROS) to NO-mediated signaling in hepatocytes on inflammation. RESULTS: In rats treated with lipopolysaccharide (LPS), mitochondria-targeted antioxidants (mtAOX) (mitoTEMPO and SkQ1) reduced inducible nitric oxide synthase (iNOS) gene expression in liver, NO levels in blood and plasma, and markers of organ damage (lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase). In cultured hepatocytes, treated with inflammatory mediators, generated ex vivo by incubation of white blood cells with LPS, we observed an increase in NO and mtROS levels. l-NG-monomethyl arginine citrate, a NOS inhibitor, decreased both NO and mtROS levels. mtAOX reduced mtROS, cytoplasmic ROS levels, and expression of iNOS and interleukin (IL)-6. These data suggest that NO, generated by iNOS, elevates mtROS, which, in turn, diffuse into the cytoplasm and upregulate iNOS and IL-6. INNOVATION: Here, for the first time, we show that intracellular signaling pathways mediated by NO and ROS are linked to each other via mtROS and form an iNOS-mtROS feed-forward loop which aggravates liver failure on acute inflammation. CONCLUSION: Our results provide a mechanistic explanation of how NO and mtROS cooperate to conduct inflammatory intracellular signals. We anticipate our results to be the missing mechanistic link between acute systemic inflammation and liver failure.


Assuntos
Inflamação/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico/biossíntese , Óxido Nítrico/sangue , Compostos Organofosforados/farmacologia , Piperidinas/farmacologia , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA