Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671842

RESUMO

Potassium chlorate (KClO3) has been widely used to evaluate the divergence in nitrogen use efficiency (NUE) between indica and japonica rice subspecies. This study investigated the transcriptional regulation of major genes involved in the NUE in rice treated with KClO3, which acts as an inhibitor of the reducing activity of nitrate reductase (NR) in higher plants. A set of two KClO3 sensitive nitrate reductase (NR) and two nitrate transporter (NRT) introgression rice lines (BC2F7), carrying the indica alleles of NR or NRT, derived from a cross between Saeilmi (japonica, P1) and Milyang23 (indica, P2), were exposed to KClO3 at the seedling stage. The phenotypic responses were recorded 7 days after treatment, and samples for gene expression, physiological, and biochemical analyses were collected at 0 h (control) and 3 h after KClO3 application. The results revealed that Saeilmi (P1, japonica) and Milyang23 (P2, indica) showed distinctive phenotypic responses. In addition, the expression of OsNR2 was differentially regulated between the roots, stem, and leaf tissues, and between introgression lines. When expressed in the roots, OsNR2 was downregulated in all introgression lines. However, in the stem and leaves, OsNR2 was upregulated in the NR introgression lines, but downregulation in the NRT introgression lines. In the same way, the expression patterns of OsNIA1 and OsNIA2 in the roots, stem, and leaves indicated a differential transcriptional regulation by KClO3, with OsNIA2 prevailing over OsNIA1 in the roots. Under the same conditions, the activity of NR was inhibited in the roots and differentially regulated in the stem and leaf tissues. Furthermore, the transcriptional divergence of OsAMT1.3 and OsAMT2.3, OsGLU1 and OsGLU2, between NR and NRT, coupled with the NR activity pattern in the roots, would indicate the prevalence of nitrate (NO3¯) transport over ammonium (NH4+) transport. Moreover, the induction of catalase (CAT) and polyphenol oxidase (PPO) enzyme activities in Saeilmi (P1, KClO3 resistant), and the decrease in Milyang23 (P2, KClO3 sensitive), coupled with the malondialdehyde (MDA) content, indicated the extent of the oxidative stress, and the induction of the adaptive response mechanism, tending to maintain a balanced reduction-oxidation state in response to KClO3. The changes in the chloroplast pigments and proline content propose these compounds as emerging biomarkers for assessing the overall plant health status. These results suggest that the inhibitory potential of KClO3 on the reduction activity of the nitrate reductase (NR), as well as that of the genes encoding the nitrate and ammonium transporters, and glutamate synthase are tissue-specific, which may differentially affect the transport and assimilation of nitrate or ammonium in rice.


Assuntos
Cloratos/farmacologia , Nitrogênio/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato Sintase/genética , Glutamato Sintase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Oryza/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Prolina/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
2.
Plants (Basel) ; 11(6)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336670

RESUMO

In rice, high radial oxygen loss (ROL) has been associated with the reduction in the activity of methanogens, therefore reducing the formation of methane (CH4) due to the abundance in application of nitrogen (N)-rich fertilizers. In this study, we evaluated the root growth behavior and ROL rate of a doubled haploid (DH) population (n = 117) and parental lines 93-11 (P1, indica) and Milyang352 (P2, japonica) in response to iron (II) sulfide (FeS). In addition, we performed a linkage mapping and quantitative trait locus (QTL) analysis on the same population for the target traits. The results of the phenotypic evaluation revealed that parental lines had distinctive root growth and ROL patterns, with 93-11 (indica) and Milyang352 (japonica) showing low and high ROL rates, respectively. This was also reflected in their derived population, indicating that 93.2% of the DH lines exhibited a high ROL rate and about 6.8% had a low ROL pattern. Furthermore, the QTL and linkage map analysis detected two QTLs associated with the control of ROL and root area on chromosomes 2 (qROL-2-1, 127 cM, logarithm of the odds (LOD) 3.04, phenotypic variation explained (PVE) 11.61%) and 8 (qRA-8-1, 97 cM, LOD 4.394, PVE 15.95%), respectively. The positive additive effect (2.532) of qROL-2-1 indicates that the allele from 93-11 contributed to the observed phenotypic variation for ROL. The breakthrough is that the qROL-2-1 harbors genes proposed to be involved in stress signaling, defense response mechanisms, and transcriptional regulation, among others. The qPCR results revealed that the majority of genes harbored by the qROL-2-1 recorded a higher transcript accumulation level in Milyang352 over time compared to 93-11. Another set of genes exhibited a high transcript abundance in P1 compared to P2, while a few were differentially regulated between both parents. Therefore, OsTCP7 and OsMYB21, OsARF8 genes encoding transcription factors (TFs), coupled with OsTRX, OsWBC8, and OsLRR2 are suggested to play important roles in the positive regulation of ROL in rice. However, the recorded differential expression of OsDEF7 and OsEXPA, and the decrease in OsNIP2, Oscb5, and OsPLIM2a TF expression between parental lines proposes them as being involved in the control of oxygen flux level in rice roots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA