Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 824, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237935

RESUMO

Highly efficient adeno associated viruses (AAVs) targeting the central nervous system (CNS) are needed to deliver safe and effective therapies for inherited neurological disorders. The goal of this study was to compare the organ-specific transduction efficiencies of two AAV capsids across three different delivery routes. We compared AAV9-CBA-fLucYFP to AAV-DJ-CBA-fLucYFP using the following delivery routes in mice: intracerebroventricular (ICV) 1 × 1012 vg/kg, intrathecal (IT) 1 × 1012 vg/kg, and intravenous (IV) 1 × 1013 vg/kg body weight. Our evaluations revealed that following ICV and IT administrations, AAV-DJ demonstrated significantly increased vector genome (vg) uptake throughout the CNS as compared to AAV9. Through the IV route, AAV9 demonstrated significantly increased vg uptake in the CNS. However, significantly fewer vgs were detected in the off-target organs (kidney and liver) following administration of AAV-DJ using the IT and IV delivery routes as compared to AAV9. Distributions of vgs correlate well with transgene transcript levels, luciferase enzyme activities, and immunofluorescence detection of YFP. Overall, between the two vectors, AAV-DJ resulted in better targeting and expression in CNS tissues paired with de-targeting and reduced expression in liver and kidneys. Our findings support further examination of AAV-DJ as a gene therapy capsid for the treatment of neurological disorders.


Assuntos
Encéfalo , Dependovirus , Vetores Genéticos , Fígado , Medula Espinal , Animais , Dependovirus/genética , Fígado/metabolismo , Encéfalo/metabolismo , Vetores Genéticos/administração & dosagem , Medula Espinal/metabolismo , Transgenes , Camundongos , Transdução Genética , Técnicas de Transferência de Genes
2.
Genes (Basel) ; 14(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37895215

RESUMO

The production of clinical-grade recombinant adeno-associated viral (AAV) vectors for gene therapy trials remains a major hurdle in the further advancement of the gene therapy field. During the past decades, AAV research has been predominantly focused on the development of new capsid modifications, vector-associated immunogenicity, and the scale-up vector production. However, limited studies have examined the possibility to manipulate non-structural components of AAV such as the Rep genes. Historically, naturally isolated, or recombinant library-derived AAV capsids have been produced using the AAV serotype 2 Rep gene to package ITR2-flanked vector genomes. In the current study, we mutated four variable amino acids in the conservative part of the binding domain in AAV serotype 6 Rep to generate a Rep2/6 hybrid gene. This newly generated Rep2/6 hybrid had improved packaging ability over wild-type Rep6. AAV vectors produced with Rep2/6 exhibited similar in vivo activity as standard AAV6 vectors. Furthermore, we show that this Rep2/6 hybrid also improves full/empty capsid ratios, suggesting that Rep bioengineering can be used to improve the ratio of fully encapsulated AAV vectors during upstream manufacturing processes.


Assuntos
Proteínas do Capsídeo , Vetores Genéticos , Vetores Genéticos/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Terapia Genética , Dependovirus/genética , Dependovirus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA