RESUMO
A high performance, snapshot Image Mapping Spectrometer was developed that provides fast image acquisition (100 Hz) of 16 bit hyperspectral data cubes (210x210x46) over a spectral range of 515-842 nm. Essential details of the opto-mechanical design are presented. Spectral accuracy, precision, and image reconstruction metrics such as resolution are discussed. Fluorescently stained cell samples were used to directly compare the data obtained using newly developed and the reference image mapping spectrometer. Additional experimental results are provided to demonstrate the abilities of the new spectrometer to acquire highly-resolved, motion-artifact-free hyperspectral images at high temporal sampling rates.
RESUMO
A fiber-based snapshot imaging spectrometer was developed with a maximum of 31853 (~188 x 170) spatial sampling and 61 spectral channels in the 450nm-750nm range. A compact, custom-fabricated fiber bundle was used to sample the object image at the input and create void spaces between rows at the output for dispersion. The bundle was built using multicore 6x6 fiber block ribbons. To avoid overlap between the cores in the direction of dispersion, we selected a subset of cores using two alternative approaches; a lenslet array and a photomask. To calibrate the >30000 spatial samples of the system, a rapid spatial calibration method was developed based on phase-shifting interferometry (PSI). System crosstalk and spectral resolution were also characterized. Preliminary hyperspectral imaging results of the Rice University campus landscape, obtained with the spectrometer, are presented to demonstrate the system's spectral imaging capability for distant scenes. The spectrum of different plant species with different health conditions, obtained with the spectrometer, was in accordance with reference instrument measurements. We also imaged Houston traffic to demonstrate the system's snapshot hyperspectral imaging capability. Potential applications of the system include terrestrial monitoring, land use, air pollution, water resources, and lightning spectroscopy. The fiber-based system design potentially allows tuning between spatial and spectral sampling to meet specific imaging requirements.
RESUMO
PURPOSE: Retinal angiography evaluates retinal and choroidal perfusion and vascular integrity and is used to manage many ophthalmic diseases, such as age-related macular degeneration. The most common method, fluorescein angiography (FA), is invasive and can lead to untoward effects. As an emerging replacement, noninvasive OCT angiography (OCTA) is used regularly as a dye-free substitute with superior resolution and additional depth-sectioning abilities; however, general trends in FA as signified by varying intensity in images are not always reproducible in the fine structural detail in an OCTA image stack because of the source of their respective signals, OCT speckle decorrelation versus fluorescein emission. METHODS: We present a noninvasive/dye-free analog to angiography imaging using retinal hyperspectral imaging with a nonscanning spectral imager, the image mapping spectrometer (IMS), to reproduce perfusion-related data based on the abundance of oxyhemoglobin (HbO2) in the retina. With a new unmixing procedure of the IMS-acquired spectral data cubes (350 × 350 × 43), we produced noninvasive HbO2 maps unmixed from reflectance spectra. RESULTS: Here, we present 15 HbO2 maps from seven healthy and eight diseased retinas and compare these maps with corresponding FA and OCTA results with a discussion of each technique. CONCLUSIONS: Our maps showed visual agreement with hypo- and hyperfluorescence trends in venous phase FA images, suggesting that our method provides a new use for hyperspectral imaging as a noninvasive angiography-analog technique and as a complementary technique to OCTA. TRANSLATIONAL RELEVANCE: The application of hyperspectral imaging and spectral analysis can potentially improve/broaden retinal disease screening and enable a noninvasive technique, which complements OCTA.
RESUMO
Snapshot hyperspectral imaging augments pixel dwell time and acquisition speeds over existing scanning systems, making it a powerful tool for fluorescence microscopy. While most snapshot systems contain fixed datacube parameters (x,y,λ), our novel snapshot system, called the lenslet array tunable snapshot imaging spectrometer (LATIS), demonstrates tuning its average spectral resolution from 22.66 nm (80x80x22) to 13.94 nm (88x88x46) over 485 to 660 nm. We also describe a fixed LATIS with a datacube of 200x200x27 for larger field-of-view (FOV) imaging. We report <1 sec exposure times and high resolution fluorescence imaging with minimal artifacts.