Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Biol Sci ; 291(2027): 20231988, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39045694

RESUMO

Understanding the dispersal potential of different species is essential for predicting recovery trajectories following local disturbances and the potential for adaptive loci to spread to populations facing extreme environmental changes. However, dispersal distances have been notoriously difficult to estimate for scleractinian corals, where sexually (as gametes or larvae) or asexually (as fragments or larvae) derived propagules disperse through vast oceans. Here, we demonstrate that generational dispersal distances for sexually produced propagules can be indirectly inferred for corals using individual-based isolation-by-distance (IbD) analyses by combining reduced-representation genomic sequencing with photogrammetric spatial mapping. Colonies from the genus Agaricia were densely sampled across plots at four locations and three depths in Curaçao. Seven cryptic taxa were found among the three nominal species (Agaricia agaricites, Agaricia humilis and Agaricia lamarcki), with four taxa showing generational dispersal distances within metres (two taxa within A. agaricites and two within A. humilis). However, no signals of IbD were found in A. lamarcki taxa and thus these taxa probably disperse relatively longer distances. The short distances estimated here imply that A. agaricites and A. humilis populations are reliant on highly localized replenishment and demonstrate the need to estimate dispersal distances quantitatively for more coral species.


Assuntos
Distribuição Animal , Antozoários , Recifes de Corais , Animais , Antozoários/fisiologia
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260386

RESUMO

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


Assuntos
Fabaceae/fisiologia , Pradaria , Internacionalidade , Nitrogênio/farmacologia , Fósforo/farmacologia , Biodiversidade , Biomassa , Fabaceae/efeitos dos fármacos , Probabilidade
3.
Oecologia ; 202(3): 561-575, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37436476

RESUMO

Plant-plant interactions are integral to the establishment and persistence of diversity in plant communities. For annual plant species that depend on seeds to regenerate, seed characteristics that confer fitness advantages may mediate processes such as plant-plant interactions. Seed mass is known to vary widely and has been shown to associate with species' differences in stress tolerance and competitive effects. However, understanding of how seed mass influences species' responses to competition is less well understood. Using natural assemblages of six closely related annual plant species in Western Australia, we implemented a thinning study to assess how seed mass influences the outcomes of plant-plant interactions. We found relatively weak evidence for competition or facilitation among species. Our strongest results indicated that heavy-seeded species had lower survivorship than light-seeded species when interacting with heterospecifics. Seed mass was also negatively related to overall survival, counter to expectations. These findings indicate some evidence for trade-offs mediated by seed mass in this system. However, we acknowledge that other factors may have influenced our results, such as the use of natural assemblages (rather than using sowing experiments) and the presence of important small-scale environmental variation not captured with our choice of abiotic variables. Further research is required to clarify the role of seed mass in this diverse annual system, ideally including many focal species, and using sowing experiments.


Assuntos
Plantas , Sementes , Estações do Ano
4.
Proc Natl Acad Sci U S A ; 117(8): 4218-4227, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32034102

RESUMO

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.


Assuntos
Fluxo Gênico , Variação Genética , Plantago/genética , Demografia , Espécies Introduzidas , Filogenia , Plantago/química
5.
New Phytol ; 236(3): 839-851, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35922934

RESUMO

A range of functional trait-based approaches have been developed to investigate community assembly processes, but most ignore how traits covary within communities. We combined existing approaches - community-weighted means (CWMs) and functional dispersion (FDis) - with a metric of trait covariance to examine assembly processes in five angiosperm assemblages along a moisture gradient in Australia's subtropics. In addition to testing hypotheses about habitat filtering along the gradient, we hypothesized that trait covariance would be strongest at both ends of the moisture gradient and weakest in the middle, reflecting trade-offs associated with light capture in productive sites and moisture stress in dry sites. CWMs revealed evidence of climatic filtering, but FDis patterns were less clear. As hypothesized, trait covariance was weakest in the middle of the gradient but unexpectedly peaked at the second driest site due to the emergence of a clear drought tolerance-drought avoidance spectrum. At the driest site, the same spectrum was truncated at the 'avoider' end, revealing important information about habitat filtering in this system. Our focus on trait covariance revealed the nature and strength of trade-offs imposed by light and moisture availability, complementing insights gained about community assembly from existing trait-based approaches.


Assuntos
Ecossistema , Plantas , Floresta Úmida , Fenótipo , Filogenia
6.
Ecol Appl ; 32(6): e2636, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35404495

RESUMO

Functional traits are proxies for a species' ecology and physiology and are often correlated with plant vital rates. As such they have the potential to guide species selection for restoration projects. However, predictive trait-based models often only explain a small proportion of plant performance, suggesting that commonly measured traits do not capture all important ecological differences between species. Some residual variation in vital rates may be evolutionarily conserved and captured using taxonomic groupings alongside common functional traits. We tested this hypothesis using growth rate data for 17,299 trees and shrubs from 80 species of Eucalyptus and 43 species of Acacia, two hyper-diverse and co-occurring genera, collected from 497 neighborhood plots in 137 Australian mixed-species revegetation plantings. We modeled relative growth rates of individual plants as a function of environmental conditions, species-mean functional traits, and neighbor density and diversity, across a moisture availability gradient. We then assessed whether the strength and direction of these relationships differed between the two genera. We found that the inclusion of genus-specific relationships offered a significant but modest improvement to model fit (1.6%-1.7% greater R2 than simpler models). More importantly, almost all correlates of growth rate differed between Eucalyptus and Acacia in strength, direction, or how they changed along the moisture gradient. These differences mapped onto physiological differences between the genera that were not captured solely by measured functional traits. Our findings suggest taxonomic groupings can capture or mediate variation in plant performance missed by common functional traits. The inclusion of taxonomy can provide a more nuanced understanding of how functional traits interact with abiotic and biotic conditions to drive plant performance, which may be important for constructing trait-based frameworks to improve restoration outcomes.


Assuntos
Acacia , Eucalyptus , Austrália , Folhas de Planta/fisiologia , Plantas , Árvores/fisiologia
7.
Oecologia ; 198(4): 865-875, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34999943

RESUMO

Environmentally cued germination may play an important role in promoting coexistence in Mediterranean annual plant systems if it causes niche differentiation across heterogeneous microsite conditions. In this study, we tested how microsite conditions experienced by seeds in the field and light conditions in the laboratory influenced germination in 12 common annual plant species occurring in the understorey of the York gum-jam woodlands in southwest Western Australia. Specifically, we hypothesized that if germination promotes spatial niche differentiation, then we should observe species-specific germination responses to light. In addition, we hypothesized that species' laboratory germination response may depend on the microsite conditions experienced by seeds while buried. We tested the laboratory germination response of seeds under diurnally fluctuating light and complete darkness, which were collected from microsites spanning local-scale environmental gradients known to influence community structure in this system. We found that seeds of 6 out of the 12 focal species exhibited significant positive germination responses to light, but that the magnitude of these responses varied greatly with the relative light requirement for germination ranging from 0.51 to 0.86 for these species. In addition, germination increased significantly across a gradient of canopy cover for two species, but we found little evidence to suggest that species' relative light requirement for germination varied depending on seed bank microsite conditions. Our results suggest that variability in light availability may promote coexistence in this system and that the microsite conditions seeds experience in the intra-growing season period can further nuance species germination behaviour.


Assuntos
Germinação , Sementes , Austrália , Germinação/fisiologia , Luz , Dormência de Plantas/fisiologia , Estações do Ano , Sementes/fisiologia , Temperatura
8.
J Environ Manage ; 302(Pt B): 114051, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34773778

RESUMO

Land-use change, and associated land clearing/conversion and fragmentation are major drivers of biodiversity decline across the globe. The spread of invasive species is a well-recognised consequence of land-use change. The extent and intensity of invasion however is often difficult to assess due to a lack of temporal data. Using detailed mapping information for 130, 950 km2 of sub-coastal Queensland, Australia and results from field surveys we investigated changes to land-use, the extent of remnant (intact) vegetation and the spread of prominent invasive plant species over time (1997-2018). In the 50 years prior to 1997 the area underwent significant land development (mostly for livestock grazing and crops), resulting in a reduction of 45% of its remnant vegetation. Despite key policy developments aimed at protecting the remaining vegetation and species, 7392 km2 was cleared/converted between 1997 and 2017, mainly for the expansion of grazing and cropping lands. Vegetation types specifically listed for national protection under these policies were some of the greatest affected, highlighting the need for improved implementation and regulation of these control measures. Within remaining fragments of remnant vegetation, the cover and presence of two invasive perennial grass species indian couch (Bothriochloa pertusa) and buffel grass (Cenchrus ciliaris) increased significantly during this time period. There was also a moderate increase in the cover and presence of the annual herb Parthenium weed (Parthenium hysterophorus). The spread of these species within the landscape likely reflects an 'invasion debt', incurred from an intense history of land-use within the region and we predict this trend will continue to threaten remnant ecosystems.


Assuntos
Biodiversidade , Ecossistema , Austrália , Conservação dos Recursos Naturais , Espécies Introduzidas , Plantas Daninhas
9.
Ecol Lett ; 24(5): 970-983, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33638576

RESUMO

Life history strategies are fundamental to the ecology and evolution of organisms and are important for understanding extinction risk and responses to global change. Using global datasets and a multiple response modelling framework we show that trait-climate interactions are associated with life history strategies for a diverse range of plant species at the global scale. Our modelling framework informs our understanding of trade-offs and positive correlations between elements of life history after accounting for environmental context and evolutionary and trait-based constraints. Interactions between plant traits and climatic context were needed to explain variation in age at maturity, distribution of mortality across the lifespan and generation times of species. Mean age at maturity and the distribution of mortality across plants' lifespan were under evolutionary constraints. These findings provide empirical support for the theoretical expectation that climatic context is key to understanding trait to life history relationships globally.


Assuntos
Características de História de Vida , Evolução Biológica , Ecologia , Fenótipo , Plantas
10.
Ecol Lett ; 24(11): 2378-2393, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34355467

RESUMO

Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.


Assuntos
Máscaras , Plantago , Adaptação Fisiológica , Biomassa , Fenótipo
11.
Glob Chang Biol ; 26(5): 3079-3090, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31994234

RESUMO

Abiotic environmental change, local species extinctions and colonization of new species often co-occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2 ). Colonists with resource-acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C-above-ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity-dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Espécies Introduzidas , Poaceae
12.
Proc Biol Sci ; 286(1915): 20192221, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31744440

RESUMO

Metabolic scaling theory (MST) is one of ecology's most high-profile general models and can be used to link size distributions and productivity in forest systems. Much of MST's foundation is based on size distributions following a power law function with a scaling exponent of -2, a property assumed to be consistent in steady-state ecosystems. We tested the theory's generality by comparing actual size distributions with those predicted using MST parameters assumed to be general. We then used environmental variables and functional traits to explain deviation from theoretical expectations. Finally, we compared values of relative productivity predicted using MST with a remote-sensed measure of productivity. We found that fire-prone heath communities deviated from MST-predicted size distributions, whereas fire-sensitive rainforests largely agreed with the theory. Scaling exponents ranged from -1.4 to -5.3. Deviation from the power law assumption was best explained by specific leaf area, which varies along fire frequency and moisture gradients. While MST may hold in low-disturbance systems, we show that it cannot be applied under many environmental contexts. The theory should remain general, but understanding the factors driving deviation from MST and subsequent refinements is required if it is to be applied robustly across larger scales.


Assuntos
Ecossistema , Modelos Biológicos , Metabolismo
13.
Proc Biol Sci ; 285(1886)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185637

RESUMO

Native and exotic species richness is expected to be negatively related at small spatial scales where individuals interact, and positive at larger spatial scales as a greater variety of habitats are sampled. However, a range of native-exotic richness relationships (NERRs) have been reported, including positive at small scales and negative at larger scales. We present a hierarchical metacommunity framework to explain how contrasting NERRs may emerge across scales and study systems, and then apply this framework to NERRs in an invaded winter annual plant system in southwest Western Australia. We analysed NERRs at increasing spatial scales from neighbourhoods (0.09 m2) to communities (225 m2) to metacommunities (greater than 10 ha) within a multilevel structural equation model. In contrast to many previous studies, native and exotic richness were positively related at the neighbourhood scale and were not significantly associated at larger scales. Heterogeneity in soil surface properties was weakly, but positively, associated with native and exotic richness at the community scale. Metacommunity exotic richness increased strongly with regional temperature and moisture availability, but relationships for native richness were negative and much weaker. Thus, we show that neutral NERRs can emerge at larger scales owing to differential climatic filtering of native and exotic species pools.


Assuntos
Biota , Clima , Magnoliopsida/fisiologia , Dispersão Vegetal , Biodiversidade , Ecossistema , Espécies Introduzidas , Austrália Ocidental
14.
Ecol Lett ; 20(7): 872-882, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28510261

RESUMO

Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes.


Assuntos
Biodiversidade , Plantas , Sementes
15.
Glob Chang Biol ; 22(1): 110-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26010833

RESUMO

Although the influence of nitrogen (N) addition on grassland plant communities has been widely studied, it is still unclear whether observed patterns and underlying mechanisms are constant across biomes. In this systematic review, we use meta-analysis and metaregression to investigate the influence of N addition (here referring mostly to fertilization) upon the biodiversity of temperate mountain grasslands (including montane, subalpine and alpine zones). Forty-two studies met our criteria of inclusion, resulting in 134 measures of effect size. The main general responses of mountain grasslands to N addition were increases in phytomass and reductions in plant species richness, as observed in lowland grasslands. More specifically, the analysis reveals that negative effects on species richness were exacerbated by dose (ha(-1) year(-1) ) and duration of N application (years) in an additive manner. Thus, sustained application of low to moderate levels of N over time had effects similar to short-term application of high N doses. The climatic context also played an important role: the overall effects of N addition on plant species richness and diversity (Shannon index) were less pronounced in mountain grasslands experiencing cool rather than warm summers. Furthermore, the relative negative effect of N addition on species richness was more pronounced in managed communities and was strongly negatively related to N-induced increases in phytomass, that is the greater the phytomass response to N addition, the greater the decline in richness. Altogether, this review not only establishes that plant biodiversity of mountain grasslands is negatively affected by N addition, but also demonstrates that several local management and abiotic factors interact with N addition to drive plant community changes. This synthesis yields essential information for a more sustainable management of mountain grasslands, emphasizing the importance of preserving and restoring grasslands with both low agricultural N application and limited exposure to N atmospheric deposition.


Assuntos
Biodiversidade , Clima , Pradaria , Nitrogênio , Plantas , Biomassa , Fertilizantes , Desenvolvimento Vegetal , Estações do Ano
16.
Ecol Lett ; 18(4): 336-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25728390

RESUMO

Alien plant species are known to have a wide range of impacts on recipient communities, from resident species' exclusions to coexistence with resident species. It remains unclear; however, if this variety of impacts is due to different invader strategies, features of recipient communities or both. To test this, we examined multiple plant invasions of a single ecosystem in southwestern Australia. We used extensive community data to calculate pairwise segregation between target alien species and many co-occurring species. We related segregation to species' positions along community trait hierarchies and identified at least two distinct invasion strategies: 'exploiters' which occupy high positions along key trait hierarchies and reduce local native species diversity (particularly in nutrient-enriched situations), and 'coexisters' who occupy intermediate trait positions and have no discernable impact on native diversity. We conclude that trait hierarchies, linked to measures of competition, can provide valuable insights about the processes driving different invasion outcomes.


Assuntos
Biodiversidade , Ecossistema , Espécies Introduzidas , Plantas/classificação , Característica Quantitativa Herdável , Araliaceae/fisiologia , Asteraceae/fisiologia , Modelos Biológicos , Poaceae/fisiologia , Portulacaceae/fisiologia , Scrophulariaceae/fisiologia , Austrália Ocidental
17.
Ecology ; 95(2): 399-410, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24669733

RESUMO

Plant communities can respond to environmental changes by altering their species composition and by individuals (within species) adjusting their physiology. These responses can be captured by measuring key functional traits among and within species along important environmental gradients. Some anthropogenic changes (such as fertilizer runoff) are known to induce distinct community responses, but rarely have responses across natural and anthropogenic gradients been compared in the same system. In this study, we used comprehensive specific leaf area (SLA) data from a diverse Australian annual plant system to examine how individual species and whole communities respond to natural and anthropogenic gradients, and to climatically different growing seasons. We also investigated the influence of different leaf-sampling strategies on community-level results. Many species had similar mean SLA values but differed in SLA responses to spatial and temporal environmental variation. At the community scale, we identified distinct SLA responses to natural and anthropogenic gradients. Along anthropogenic gradients, increased mean SLA, coupled with SLA convergence, revealed evidence of competitive exclusion. This was further supported by the dominance of species turnover (vs. intraspecific variation) along these gradients. We also revealed strong temporal changes in SLA distributions in response to increasing growing-season precipitation. These climate-driven changes highlight differences among co-occurring species in their adaptive capacity to exploit abundant water resources during favorable seasons, differences that are likely to be important for species coexistence in this system. In relation to leaf-sampling strategies, we found that using leaves from a climatically different growing season can lead to misleading conclusions at the community scale.


Assuntos
Acacia/fisiologia , Ecossistema , Eucalyptus/fisiologia , Luz , Folhas de Planta/fisiologia , Acacia/crescimento & desenvolvimento , Austrália , Clima , Eucalyptus/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Fatores de Tempo
18.
Ecology ; 94(11): 2575-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24400509

RESUMO

The ability of females to adaptively influence offspring phenotype via maternal effects is widely acknowledged, but corresponding nongenetic paternal effects remain unexplored. Males can adjust sperm phenotype in response to local conditions, but the transgenerational consequences of this plasticity are unknown. We manipulated paternal density of a broadcast spawner (Styela plicata, a solitary ascidean) using methods shown previously to alter sperm phenotype in the field, then conducted in vitro fertilizations that excluded maternal effects and estimated offspring performance under natural conditions. Offspring sired by males from low-density experimental populations developed faster and had a higher hatching success than offspring sired by males living in high densities. In the field, offspring survived relatively better when their environment matched their father's, raising the possibility that fathers can adaptively influence the phenotype of their offspring according to local conditions. As the only difference between offspring is whether they were artificially fertilized by sperm from males kept in high- vs. low-density cages, we can unequivocally attribute any differences in offspring performance to an environmentally induced paternal effect. Males of many species manipulate the phenotype of their sperm in response to sperm competition: our results show this plasticity can influence offspring fitness, potentially in adaptive ways, raising the possibility that adaptive nongenetic paternal effects may be more common than previously thought.


Assuntos
Urocordados/fisiologia , Animais , Ecossistema , Feminino , Masculino , Metamorfose Biológica , Densidade Demográfica
19.
Am J Bot ; 100(7): 1356-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23825137

RESUMO

PREMISE OF STUDY: Plant functional traits are commonly used as proxies for plant responses to environmental challenges, yet few studies have explored how functional trait distributions differ across gradients of land-use change. By comparing trait distributions in intact forests with those across land-use change gradients, we can improve our understanding of the ways land-use change alters the diversity and functioning of plant communities. METHODS: We examined how the variation and distribution of trait values for seven plant functional traits differ between reference natural forest and three types of land-use conversion (pasture, old-field, or "legacy" sites-regrowth following logging), landscape productivity (NPP) and vegetation strata (tree or non-tree "understory"), in a meta-analysis of studies from 15 landscapes across five continents. KEY RESULTS: Although trait variation often differed between land-uses within a landscape, these patterns were rarely consistent across landscapes. The variance and distribution of traits were more likely to differ consistently between natural forest and land-use conversion categories for understory (non-tree) plants than for trees. Landscape productivity did not significantly alter the difference in trait variance between natural forest and land-use conversion categories for any trait except dispersal. CONCLUSIONS: Our results suggest that even for traits well linked to plant environmental response strategies, broad classes of land-use change and landscape productivity are not generally useful indicators of the mechanisms driving compositional changes in human-modified forest systems.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Árvores/fisiologia , Demografia , Monitoramento Ambiental
20.
Ecology ; 104(5): e4021, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36883377

RESUMO

Applications of ecological theory to natural communities often assume that competitive, negative density-dependent processes are the only type of interaction important for diversity maintenance. Recent advances suggest that positive interactions within trophic levels (e.g., plant-plant) may also affect plant coexistence. Though positive plant-plant interactions theoretically might result in positive or nonmonotonic frequency or density dependence (FD/DD), less is known about how commonly these patterns occur or which ecological processes might result in such patterns in natural plant communities. In this study we tested for signals of variable frequency and density dependence in annual flowering plant communities in Western Australia and searched for evidence that interactions among plants during flowering might induce positive or nonmonotonic FD/DD in flowering plants. Using four common annual wildflower species, we ask if plant fecundity exhibited positive or nonmonotonic FD/DD and if pollinator-mediated plant-plant interactions during flowering change patterns of FD/DD relative to pollinator-independent plant interactions. Three species exhibited nonmonotonic (hump-shaped) density dependence, and only one species experienced strictly negative density dependence. Each species exhibited a different pattern of frequency dependence (positive, negative, weakly nonmonotonic, and no detectable frequency dependence). Pollinator-mediated plant-plant interactions during flowering induced both nonmonotonic density dependence and negative frequency dependence in one species. Importantly, the extent of variation in FD/DD observed in our study brings into question the dominance of negative density and frequency dependence in theory, suggesting instead that demographic responses of plants to their communities fall along a continuum of possible density- and frequency-dependent patterns.


Assuntos
Magnoliopsida , Polinização , Polinização/fisiologia , Plantas , Reprodução , Austrália Ocidental , Flores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA