RESUMO
Direct-write processes enable the alteration or deposition of materials in a continuous, directable, sequential fashion. In this work, we demonstrate an electron beam direct-write process in an aberration-corrected scanning transmission electron microscope. This process has several fundamental differences from conventional electron-beam-induced deposition techniques, where the electron beam dissociates precursor gases into chemically reactive products that bond to a substrate. Here, we use elemental tin (Sn) as a precursor and employ a different mechanism to facilitate deposition. The atomic-sized electron beam is used to generate chemically reactive point defects at desired locations in a graphene substrate. Temperature control of the sample is used to enable the precursor atoms to migrate across the surface and bond to the defect sites, thereby enabling atom-by-atom direct writing.
RESUMO
Over the last few years, a new mode for imaging in the scanning transmission electron microscope (STEM) has gained attention as it permits the direct visualization of sample conductivity and electrical connectivity. When the electron beam (e-beam) is focused on the sample in the STEM, secondary electrons (SEs) are generated. If the sample is conductive and electrically connected to an amplifier, the SE current can be measured as a function of the e-beam position. This scenario is similar to the better-known scanning electron microscopy-based technique, electron beam-induced current imaging, except that the signal in the STEM is generated by the emission of SEs, hence the name secondary electron e-beam-induced current (SEEBIC), and in this case, the current flows in the opposite direction. Here, we provide a brief review of recent work in this area, examine the various contrast generation mechanisms associated with SEEBIC, and illustrate its use for the characterization of graphene nanoribbon devices.
RESUMO
Using electron beam manipulation, we enable deterministic motion of individual Si atoms in graphene along predefined trajectories. Structural evolution during the dopant motion was explored, providing information on changes of the Si atom neighborhood during atomic motion and providing statistical information of possible defect configurations. The combination of a Gaussian mixture model and principal component analysis applied to the deep learning-processed experimental data allowed disentangling of the atomic distortions for two different graphene sublattices. This approach demonstrates the potential of e-beam manipulation to create defect libraries of multiple realizations of the same defect and explore the potential of symmetry breaking physics. The rapid image analytics enabled via a deep learning network further empowers instrumentation for e-beam controlled atom-by-atom fabrication. The analysis described in the paper can be reproduced via an interactive Jupyter notebook at https://git.io/JJ3Bx.
RESUMO
We report electron-beam activated motion of a catalytic nanoparticle along a graphene step edge and associated etching of the edge. The catalytic hydrogenation process was observed to be activated by a combination of elevated temperature and electron beam irradiation. Reduction of beam fluence on the particle was sufficient to stop the process, leading to the ability to switch on and off the etching. Such an approach enables the targeting of individual nanoparticles to induce motion and beam-controlled etching of matter through activated electrocatalytic processes. The applications of electron-beam control as a paradigm for molecular-scale robotics are discussed.
RESUMO
Building materials from the atom up is the pinnacle of materials fabrication. Until recently the only platform that offered single-atom manipulation was scanning tunneling microscopy. Here controlled manipulation and assembly of a few atom structures are demonstrated by bringing together single atoms using a scanning transmission electron microscope. An atomically focused electron beam is used to introduce Si substitutional defects and defect clusters in graphene with spatial control of a few nanometers and enable controlled motion of Si atoms. The Si substitutional defects are then further manipulated to form dimers, trimers, and more complex structures. The dynamics of a beam-induced atomic-scale chemical process is captured in a time-series of images at atomic resolution. These studies suggest that control of the e-beam-induced local processes offers the next step toward atom-by-atom nanofabrication, providing an enabling tool for the study of atomic-scale chemistry in 2D materials and fabrication of predefined structures and defects with atomic specificity.
RESUMO
Scanning transmission electron microscopy (STEM) has become the main stay for materials characterization on atomic level, with applications ranging from visualization of localized and extended defects to mapping order parameter fields. In recent years, attention has focused on the potential of STEM to explore beam induced chemical processes and especially manipulating atomic motion, enabling atom-by-atom fabrication. These applications, as well as traditional imaging of beam sensitive materials, necessitate increasing the dynamic range of STEM in imaging and manipulation modes, and increasing the absolute scanning speed which can be achieved by combining sparse sensing methods with nonrectangular scanning trajectories. Here we have developed a general method for real-time reconstruction of sparsely sampled images from high-speed, noninvasive and diverse scanning pathways, including spiral scan and Lissajous scan. This approach is demonstrated on both the synthetic data and experimental STEM data on the beam sensitive material graphene. This work opens the door for comprehensive investigation and optimal design of dose efficient scanning strategies and real-time adaptive inference and control of e-beam induced atomic fabrication.
RESUMO
Imperfections in organometal halide perovskite films such as grain boundaries (GBs), defects, and traps detrimentally cause significant nonradiative recombination energy loss and decreased power conversion efficiency (PCE) in solar cells. Here, a simple layer-by-layer fabrication process based on air exposure followed by thermal annealing is reported to grow perovskite films with large, single-crystal grains and vertically oriented GBs. The hole-transport medium Spiro-OMeTAD is then infiltrated into the GBs to form vertically aligned bulk heterojunctions. Due to the space-charge regions in the vicinity of GBs, the nonradiative recombination in GBs is significantly suppressed. The GBs become active carrier collection channels. Thus, the internal quantum efficiencies of the devices approach 100% in the visible spectrum range. The optimized cells yield an average PCE of 16.3 ± 0.9%, comparable to the best solution-processed perovskite devices, establishing them as important alternatives to growing ideal single crystal thin films in the pursuit toward theoretical maximum PCE with industrially realistic processing techniques.
RESUMO
A two-step solution processing approach has been established to grow void-free perovskite films for low-cost high-performance planar heterojunction photovoltaic devices. A high-temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer-by-layer spin-coating method was used to grow "bilayer" CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well-oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800â nm and a high device efficiency of 15.6%, which is comparable to values reported for thermally annealed perovskite films.
RESUMO
Graphene is atomically thin, possesses excellent thermal conductivity, and is able to withstand high current densities, making it attractive for many nanoscale applications such as field-effect transistors, interconnects, and thermal management layers. Enabling integration of graphene into such devices requires nanostructuring, which can have a drastic impact on the self-heating properties, in particular at high current densities. Here, we use a combination of scanning thermal microscopy, finite element thermal analysis, and operando scanning transmission electron microscopy techniques to observe prototype graphene devices in operation and gain a deeper understanding of the role of geometry and interfaces during high current density operation. We find that Peltier effects significantly influence the operational limit due to local electrical and thermal interfacial effects, causing asymmetric temperature distribution in the device. Thus, our results indicate that a proper understanding and design of graphene devices must include consideration of the surrounding materials, interfaces, and geometry. Leveraging these aspects provides opportunities for engineered extreme operation devices.
RESUMO
The engineering of quantum materials requires the development of tools able to address various synthesis and characterization challenges. These include the establishment and refinement of growth methods, material manipulation, and defect engineering. Atomic-scale modification will be a key enabling factor for engineering quantum materials where desired phenomena are critically determined by atomic structures. Successful use of scanning transmission electron microscopes (STEMs) for atomic scale material manipulation has opened the door for a transformed view of what can be accomplished using electron-beam-based strategies. However, serious obstacles exist on the pathway from possibility to practical reality. One such obstacle is the in situ delivery of atomized material in the STEM to the region of interest for further fabrication processes. Here, progress on this front is presented with a view toward performing synthesis (deposition and growth) processes in a scanning transmission electron microscope in combination with top-down control over the reaction region. An in situ thermal deposition platform is presented, tested, and deposition and growth processes are demonstrated. In particular, it is shown that isolated Sn atoms can be evaporated from a filament and caught on the nearby sample, demonstrating atomized material delivery. This platform is envisioned to facilitate real-time atomic resolution imaging of growth processes and open new pathways toward atomic fabrication.
RESUMO
The scanning transmission electron microscope, a workhorse instrument in materials characterization, is being transformed into an atomic-scale material-manipulation platform. With an eye on the trajectory of recent developments and the obstacles toward progress in this field, a vision for a path toward an expanded set of capabilities and applications is provided. The microscope is reconceptualized as an instrument for fabrication and synthesis with the capability to image and characterize atomic-scale structural formation as it occurs. Further development and refinement of this approach may have substantial impact on research in microelectronics, quantum information science, and catalysis, where precise control over atomic-scale structure and chemistry of a few "active sites" can have a dramatic impact on larger-scale functionality and where developing a better understanding of atomic-scale processes can help point the way to larger-scale synthesis approaches.
RESUMO
Atomic-scale engineering typically involves bottom-up approaches, leveraging parameters such as temperature, partial pressures, and chemical affinity to promote spontaneous arrangement of atoms. These parameters are applied globally, resulting in atomic-scale features scattered probabilistically throughout the material. In a top-down approach, different regions of the material are exposed to different parameters, resulting in structural changes varying on the scale of the resolution. In this work, the application of global and local parameters is combined in an aberration-corrected scanning transmission electron microscope (STEM) to demonstrate atomic-scale precision patterning of atoms in twisted bilayer graphene. The focused electron beam is used to define attachment points for foreign atoms through the controlled ejection of carbon atoms from the graphene lattice. The sample environment is staged with nearby source materials such that the sample temperature can induce migration of the source atoms across the sample surface. Under these conditions, the electron-beam (top-down) enables carbon atoms in the graphene to be replaced spontaneously by diffusing adatoms (bottom-up). Using image-based feedback control, arbitrary patterns of atoms and atom clusters are attached to the twisted bilayer graphene with limited human interaction. The role of substrate temperature on adatom and vacancy diffusion is explored by first-principles simulations.
RESUMO
Recent studies of secondary electron (SE) emission in scanning transmission electron microscopes suggest that material's properties such as electrical conductivity, connectivity, and work function can be probed with atomic scale resolution using a technique known as secondary electron e-beam-induced current (SEEBIC). Here, we apply the SEEBIC imaging technique to a stacked 2D heterostructure device to reveal the spatially resolved electron density of an encapsulated WSe2 layer. We find that the double Se lattice site shows higher emission than the W site, which is at odds with first-principles modelling of valence ionization of an isolated WSe2 cluster. These results illustrate that atomic level SEEBIC contrast within a single material is possible and that an enhanced understanding of atomic scale SE emission is required to account for the observed contrast. In turn, this suggests that, in the future, subtle information about interlayer bonding and the effect on electron orbitals could be directly revealed with this technique.
RESUMO
Energetic processing methods such as hyperthermal implantation hold special promise to achieve the precision synthesis of metastable two-dimensional (2D) materials such as Janus monolayers; however, they require precise control. Here, we report a feedback approach to reveal and control the transformation pathways in materials synthesis by pulsed laser deposition (PLD) and apply it to investigate the transformation kinetics of monolayer WS2 crystals into Janus WSSe and WSe2 by implantation of Se clusters with different maximum kinetic energies (<42 eV/Se-atom) generated by laser ablation of a Se target. Real-time Raman spectroscopy and photoluminescence are used to assess the structure, composition, and optoelectronic quality of the monolayer crystal as it is implanted with well-controlled fluxes of selenium for different kinetic energies that are regulated with in situ ICCD imaging, ion probe, and spectroscopy diagnostics. First-principles calculations, XPS, and atomic-resolution HAADF STEM imaging are used to understand the intermediate alloy compositions and their vibrational modes to identify transformation pathways. The real-time kinetics measurements reveal highly selective top-layer conversion as WS2 transforms through WS2(1-x)Se2x alloys to WSe2 and provide the means to adjust processing conditions to achieve fractional and complete Janus WSSe monolayers as metastable transition states. The general approach demonstrates a real-time feedback method to achieve Janus layers or other metastable alloys of the desired composition, and a general means to adjust the structure and quality of materials grown by PLD, addressing priority research directions for precision synthesis with real-time adaptive control.
RESUMO
Automated experiments in 4D scanning transmission electron microscopy (STEM) are implemented for rapid discovery of local structures, symmetry-breaking distortions, and internal electric and magnetic fields in complex materials. Deep kernel learning enables active learning of the relationship between local structure and 4D-STEM-based descriptors. With this, efficient and "intelligent" probing of dissimilar structural elements to discover desired physical functionality is made possible. This approach allows effective navigation of the sample in an automated fashion guided by either a predetermined physical phenomenon, such as strongest electric field magnitude, or in an exploratory fashion. We verify the approach first on preacquired 4D-STEM data and further implement it experimentally on an operational STEM. The experimental discovery workflow is demonstrated using graphene and subsequently extended toward a lesser-known layered 2D van der Waals material, MnPS3. This approach establishes a pathway for physics-driven automated 4D-STEM experiments that enable probing the physics of strongly correlated systems and quantum materials and devices, as well as exploration of beam-sensitive materials.
RESUMO
Graphene is proposed for use in various nanodevice designs, many of which harness emergent quantum properties for device functionality. However, visualization, measurement, and manipulation become nontrivial at nanometer and atomic scales, representing a significant challenge for device fabrication, characterization, and optimization at length scales where quantum effects emerge. Here, proof of principle results at the crossroads between 2D nanoelectronic devices, e-beam-induced modulation, and imaging with secondary electron e-beam induced currents (SEEBIC) is presented. A device platform compatible with scanning transmission electron microscopy investigations is introduced. Then how the SEEBIC imaging technique can be used to visualize conductance and connectivity in single layer graphene nanodevices, even while supported on a thicker substrate (conditions under which conventional imaging fails) is shown. Finally, it is shown that the SEEBIC imaging technique can detect subtle differences in charge transport through time in nonohmic graphene nanoconstrictions indicating the potential to reveal dynamic electronic processes.
RESUMO
A robust approach for real-time analysis of the scanning transmission electron microscopy (STEM) data streams, based on ensemble learning and iterative training (ELIT) of deep convolutional neural networks, is implemented on an operational microscope, enabling the exploration of the dynamics of specific atomic configurations under electron beam irradiation via an automated experiment in STEM. Combined with beam control, this approach allows studying beam effects on selected atomic groups and chemical bonds in a fully automated mode. Here, we demonstrate atomically precise engineering of single vacancy lines in transition metal dichalcogenides and the creation and identification of topological defects in graphene. The ELIT-based approach facilitates direct on-the-fly analysis of the STEM data and engenders real-time feedback schemes for probing electron beam chemistry, atomic manipulation, and atom by atom assembly.
RESUMO
It is widely accepted that solid-state membranes are indispensable media for the graphene process, particularly transfer procedures. But these membranes inevitably bring contaminations and residues to the transferred graphene and consequently compromise the material quality. This study reports a newly observed free-standing graphene-water membrane structure, which replaces the conventional solid-state supporting media with liquid film to sustain the graphene integrity and continuity. Experimental observation, theoretical model, and molecular dynamics simulations consistently indicate that the high surface tension of pure water and its large contact angle with graphene are essential factors for forming such a membrane structure. More interestingly, water surface tension ensures the flatness of graphene layers and renders high transfer quality on many types of target substrates. This report enriches the understanding of the interactions on reduced dimensional material while rendering an alternative approach for scalable layered material processing with ensured quality for advanced manufacturing.