Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Am Chem Soc ; 146(9): 6045-6052, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394622

RESUMO

Many cellular coassemblies of proteins and polynucleotides facilitate liquid-liquid phase separation (LLPS) and the subsequent self-assembly of disease-associated amyloid fibrils within the liquid droplets. Here, we explore the dynamics of coupled phase and conformational transitions of model adenosine triphosphate (ATP)-binding peptides, ACC1-13Kn, consisting of the potent amyloidogenic fragment of insulin's A-chain (ACC1-13) merged with oligolysine segments of various lengths (Kn, n = 16, 24, 40). The self-assembly of ATP-stabilized amyloid fibrils is preceded by LLPS for peptides with sufficiently long oligolysine segments. The two-component droplets and fibrils are in dynamic equilibria with free ATP and monomeric peptides, which makes them susceptible to ATP-hydrolyzing apyrase and ACC1-13Kn-digesting proteinase K. Both enzymes are capable of rapid disassembly of amyloid fibrils, producing either monomers of the peptide (apyrase) or free ATP released together with cleaved-off oligolysine segments (proteinase K). In the latter case, the enzyme-sequestered Kn segments form subsequent droplets with the co-released ATP, resulting in an unusual fibril-to-droplet transition. In support of the highly dynamic nature of the aggregate-monomer equilibria, addition of superstoichiometric amounts of free peptide to the ACC1-13Kn-ATP coaggregate causes its disassembly. Our results show that the droplet state is not merely an intermediate phase on the pathway to the amyloid aggregate but may also constitute the final phase of a complex amyloidogenic protein misfolding scenario rich in highly degraded protein fragments incompetent to transition again into fibrils.


Assuntos
Trifosfato de Adenosina , Apirase , Endopeptidase K , Peptídeos , Amiloide/química , Peptídeos beta-Amiloides/química
2.
Mol Pharm ; 21(4): 2025-2033, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525800

RESUMO

Insulin aggregation poses a significant problem in pharmacology and medicine as it occurs during prolonged storage of the hormone and in vivo at insulin injection sites. We have recently shown that dominant forces driving the self-assembly of insulin fibrils are likely to arise from intermolecular interactions involving the N-terminal segment of the A-chain (ACC1-13). Here, we study how proline substitutions within the pilot GIVEQ sequence of this fragment affect its propensity to aggregate in both neutral and acidic environments. In a reasonable agreement with in silico prediction based on the Cordax algorithm, proline substitutions at positions 3, 4, and 5 turn out to be very effective in preventing aggregation according to thioflavin T-fluorescence-based kinetic assay, infrared spectroscopy, and atomic force microscopy (AFM). Since the valine and glutamate side chains within this segment are strongly involved in the interactions with the insulin receptor, we have focused on the possible implications of the Q → P substitution for insulin's stability and interactions with the receptor. To this end, comparative molecular dynamics (MD) simulations of the Q5P mutant and wild-type insulin were carried out for both free and receptor-bound (site 1) monomers. The results point to a mild destabilization of the mutant vis à vis the wild-type monomer, as well as partial preservation of key contacts in the complex between Q5P insulin and the receptor. We discuss the implications of these findings in the context of the design of aggregation-resistant insulin analogues retaining hormonal activity.


Assuntos
Amiloide , Insulina , Insulina/química , Prolina , Peptídeos , Insulina Regular Humana
3.
J Am Chem Soc ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36762833

RESUMO

Disease-associated progression of protein dysfunction is typically determined by an interplay of transition pathways leading to liquid-liquid phase separation (LLPS) and amyloid fibrils. As LLPS introduces another layer of complexity into fibrillization of metastable proteins, a need for tunable model systems to study these intertwined processes has emerged. Here, we demonstrate the LLPS/fibrillization properties of a family of chimeric peptides, ACC1-13Kn, in which the highly amyloidogenic fragment of insulin (ACC1-13) is merged with oligolysine segments of various lengths (Kn, n = 8, 16, 24, 32, 40). LLPS and fibrillization of ACC1-13Kn are triggered by ATP through Coulombic interactions with Kn fragments. ACC1-13K8 and ACC1-13K16 form fibrils after a short lag phase without any evidence of LLPS. However, in the case of the three longest peptides, ATP triggers instantaneous LLPS followed by the disappearance of droplets occurring in-phase with the formation of amyloid fibrils. The kinetics of the phase transition and the stability of mature co-aggregates are highly sensitive to ionic strength, indicating that electrostatic interactions play a pivotal role in selecting the LLPS-fibrillization transition pathway. Densely packed ionic interactions that characterize ACC1-13Kn-ATP fibrils render them highly sensitive to hydrostatic pressure due to solvent electrostriction, as demonstrated by infrared spectroscopy. Using atomic force microscopy imaging of rapidly frozen samples, we demonstrate that early fibrils form within single liquid droplets, starting at the droplet/bulk interface through the formation of single bent fibers. A hypothetical molecular scenario underlying the emergence of the LLPS-to-fibrils pathway in the ACC1-13Kn-ATP system has been put forward.

4.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570871

RESUMO

Cyclic dipeptides with two intramolecular peptide bonds forming a six-membered 2,5-diketopiperazine ring are gaining significant attention due to their biological and chemical properties. Small changes in the local geometry of such molecules (from cis to trans) can lead to significant structural differences. This work presents the results of a study of cyclo(l-Cys-d-Cys), a dipeptide comprising two cysteine molecules in opposite chiral configurations, with the functional groups situated at both sides of the diketopiperazine ring. X-ray diffraction (XRD) experiment revealed that the molecule crystallises in the P-1 space group, which includes the centre of inversion. The IR and Raman vibrational spectra of the molecule were acquired and interpreted in terms of the potential energy distribution (PED) according to the results of density functional theory (DFT) calculations. The DFT-assisted analysis of energy frameworks for the hydrogen bond network within molecular crystals was performed to support the interpretation of X-ray structural data. The optimisation of the computational model based on three-molecule geometry sections from the crystallographic structure, selected to appropriately reflect the intermolecular interactions responsible for the formation of 1D molecular tapes in cyclo(l-Cys-d-Cys) crystal, allowed for better correspondence between theoretical and experimental vibrational spectra. This work can be considered the first complete structural characterisation of cyclo(l-Cys-d-Cys), complemented via vibrational spectroscopy results with full band assignment aided with the use of the DFT method.

5.
Mol Biol Evol ; 38(5): 2088-2103, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480998

RESUMO

Prions, proteins that can convert between structurally and functionally distinct states and serve as non-Mendelian mechanisms of inheritance, were initially discovered and only known in eukaryotes, and consequently considered to likely be a relatively late evolutionary acquisition. However, the recent discovery of prions in bacteria and viruses has intimated a potentially more ancient evolutionary origin. Here, we provide evidence that prion-forming domains exist in the domain archaea, the last domain of life left unexplored with regard to prions. We searched for archaeal candidate prion-forming protein sequences computationally, described their taxonomic distribution and phylogeny, and analyzed their associated functional annotations. Using biophysical in vitro assays, cell-based and microscopic approaches, and dye-binding analyses, we tested select candidate prion-forming domains for prionogenic characteristics. Out of the 16 tested, eight formed amyloids, and six acted as protein-based elements of information transfer driving non-Mendelian patterns of inheritance. We also identified short peptides from our archaeal prion candidates that can form amyloid fibrils independently. Lastly, candidates that tested positively in our assays had significantly higher tyrosine and phenylalanine content than candidates that tested negatively, an observation that may help future archaeal prion predictions. Taken together, our discovery of functional prion-forming domains in archaea provides evidence that multiple archaeal proteins are capable of acting as prions-thus expanding our knowledge of this epigenetic phenomenon to the third and final domain of life and bolstering the possibility that they were present at the time of the last universal common ancestor.


Assuntos
Amiloide/metabolismo , Archaea/genética , Proteínas Arqueais/metabolismo , Epigênese Genética , Príons , Proteínas Arqueais/genética , Domínios Proteicos , Proteoma
6.
Langmuir ; 38(22): 7024-7034, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617668

RESUMO

Conformational transitions of globular proteins into amyloid fibrils are complex multistage processes exceedingly challenging to simulate using molecular dynamics (MD). Slow monomer diffusion rates and rugged free energy landscapes disfavor swift self-assembly of orderly amyloid architectures within timescales accessible to all-atom MD. Here, we conduct a multiscale MD study of the amyloidogenic self-assembly of insulin: a small protein with a complex topology defined by two polypeptide chains interlinked by three disulfide bonds. To avoid kinetic traps, unconventional preplanarized insulin conformations are used as amyloid building blocks. These starting conformers generated through uniaxial compression of the native monomer in various spatial directions represent 6 distinct (out of 16 conceivable) two-dimensional (2D) topological classes varying in N-/C-terminal segments of insulin's A- and B-chains being placed inside or outside of the central loop constituted by the middle sections of both chains and Cys7A-Cys7B/Cys19B-Cys20A disulfide bonds. Simulations of the fibrillar self-assembly are initiated through a biased in-register alignment of two, three, or four layers of flat conformers belonging to a single topological class. The various starting topologies are conserved throughout the self-assembly process resulting in polymorphic amyloid fibrils varying in structural features such as helical twist, presence of cavities, and overall stability. Some of the protofilament structures obtained in this work are highly compatible with the earlier biophysical studies on insulin amyloid and high-resolution studies on insulin-derived amyloidogenic peptide models postulating the presence of steric zippers. Our approach provides in silico means to study amyloidogenic tendencies and viable amyloid architectures of larger disulfide-constrained proteins with complex topologies.


Assuntos
Amiloide , Insulina , Amiloide/química , Proteínas Amiloidogênicas/química , Dissulfetos/química , Insulina/química , Modelos Estruturais , Peptídeos/química
7.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830214

RESUMO

Computational prediction of molecular structures of amyloid fibrils remains an exceedingly challenging task. In this work, we propose a multi-scale modeling procedure for the structure prediction of amyloid fibrils formed by the association of ACC1-13 aggregation-prone peptides derived from the N-terminal region of insulin's A-chain. First, a large number of protofilament models composed of five copies of interacting ACC1-13 peptides were predicted by application of CABS-dock coarse-grained (CG) docking simulations. Next, the models were reconstructed to all-atom (AA) representations and refined during molecular dynamics (MD) simulations in explicit solvent. The top-scored protofilament models, selected using symmetry criteria, were used for the assembly of long fibril structures. Finally, the amyloid fibril models resulting from the AA MD simulations were compared with atomic force microscopy (AFM) imaging experimental data. The obtained results indicate that the proposed multi-scale modeling procedure is capable of predicting protofilaments with high accuracy and may be applied for structure prediction and analysis of other amyloid fibrils.


Assuntos
Peptídeos beta-Amiloides/química , Insulina/química , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Agregados Proteicos , Agregação Patológica de Proteínas , Microscopia de Força Atômica/métodos , Conformação Proteica em Folha beta , Solventes/química , Água/química
8.
Langmuir ; 36(41): 12150-12159, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32988199

RESUMO

Relatively short amino acid sequences often play a pivotal role in triggering protein aggregation leading to the formation of amyloid fibrils. In the case of insulin, various regions of A- and B-chains have been implicated as the most relevant to the protein's amyloidogenicity. Here, we focus on the highly amyloidogenic H-fragment of insulin comprising the disulfide-bonded N-terminal parts of both chains. Analysis of the aggregation behavior of single-chain peptide derivatives of the H-fragment suggests that the A-chain's part initiates the aggregation process while the disulfide-tethered B-chain reluctantly adapts to amyloid structure. Merging of both A- and B-parts into single-chain continuous peptides (A-B and B-A) results in extreme amyloidogenicity exceeding that of the double-chain H-fragment as reflected by almost instantaneous de novo fibrillization. Amyloid fibrils of A-B and B-A present distinct morphological and infrared traits and do not cross-seed insulin. Our study suggests that the N-terminal part of insulin's A-chain containing the intact Cys6-Cys11 intrachain disulfide bond may constitute insulin's major amyloid stretch which, through its bent conformation, enforces a parallel in-register alignment of ß-strands. Comparison of the self-association behavior of H, A-B, and B-A peptides suggests that A-chain's N-terminal amyloid stretch is very versatile and adaptive to various structural contexts.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Sequência de Aminoácidos , Dissulfetos , Insulina
9.
Soft Matter ; 13(25): 4412-4417, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28590474

RESUMO

Herein we utilize insulin to prepare amyloid based chiral helices with either right or left handed helicity. We demonstrate that the helices can be utilized as structural templates for the conducting polymer alkoxysulfonate poly(ethylenedioxythiophene) (PEDOT-S). The chirality of the helical assembly is transferred to PEDOT-S as demonstrated by polarized optical microscopy (POM) and Circular Dichroism (CD). Analysis of the helices by conductive atomic force microscopy (c-AFM) shows significant conductivity. In addition, the morphology of the template structure is stabilized by PEDOT-S. These conductive helical structures represent promising candidates in our quest for THz resonators.


Assuntos
Condutividade Elétrica , Insulina/química , Multimerização Proteica , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estereoisomerismo , Água/química
10.
J Biol Chem ; 290(10): 5947-58, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25586185

RESUMO

Proteases play a well recognized role in the emergence of highly aggregation-prone protein fragments in vivo, whereas in vitro limited proteolysis is often employed to probe different phases of amyloidogenic pathways. Here, we show that addition of moderate amounts of pepsin to acidified bovine insulin at close to physiological temperature results in an abrupt self-assembly of amyloid-like fibrils from partially digested insulin fragments. Biochemical analysis of the pepsin-induced fibrils implicates peptide fragments (named H) consisting of the 13 or 15 N-terminal residues of the A-chain and 11 or 13 N-terminal residues of the B-chain linked by the disulfide bond between Cys-7A-Cys-7B as the main constituents. There are up to eight pepsin-cleavage sites remaining within the double chain peptide, which become protected upon fast fibrillation unless concentration of the enzyme is increased resulting in complete digestion of insulin. Controlled re-association of H-peptides leads to "explosive" fibrillation only under nonreducing conditions implying the key role of the disulfide bond in their amyloidogenicity. Such re-assembled amyloid is similar in terms of morphology and infrared features to typical bovine insulin fibrils, although it lacks the ability to seed the intact protein.


Assuntos
Proteínas Amiloidogênicas/química , Insulina/química , Agregados Proteicos , Proteólise , Proteínas Amiloidogênicas/metabolismo , Animais , Bovinos , Cristalografia por Raios X , Digestão , Dissulfetos/química , Dissulfetos/metabolismo , Insulina/metabolismo , Cinética , Pepsina A/química , Peptídeos/química , Peptídeos/metabolismo
11.
Chemphyschem ; 17(18): 2931-7, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27400417

RESUMO

The circularly polarized luminescence (CPL) spectrum of thioflavin T (ThT) bound to insulin amyloid fibrils has been measured for the first time. It has been found that the samples exhibiting induced circular dichroism (CD) retain the optical activity in the CPL spectra, with the same sign of the rotatory strength. The fluorescence dissymmetry factor is substantial (of the order of magnitude 10(-2) ). Unlike in the corresponding CD and absorption spectra, there is no shift of the CPL band with respect to the fluorescence band. It has been verified that the measured CPL spectra are free from artifacts from circularly polarized scattering of emitted light by conducting additional measurements in a medium with a refractive index similar to insulin (methylsalicylate). The CD and CPL spectra have been interpreted by means of density functional calculations carried out for ThT in its ground and first excited states in different dielectric environments and for ThT interacting with an aromatic ring. It has been found that the presence of an aromatic ring close to the ThT molecule induces Cotton effects of the same order of magnitude as the stabilization of one enantiomeric conformer. Thus, it is expected that both mechanisms contribute to the induced CD and CPL effect to a similar degree.


Assuntos
Amiloide/química , Medições Luminescentes , Tiazóis/química , Benzotiazóis , Dicroísmo Circular , Teoria Quântica
12.
Biomacromolecules ; 17(4): 1376-82, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26909651

RESUMO

Chain-length polydispersity is among the least understood factors governing the fibrillation propensity of homopolypeptides. For monodisperse poly-L-glutamic acid (PLGA), the tendency to form fibrils depends of the main-chain length. Long-chained PLGA, so-called (Glu)200, fibrillates more readily than short (Glu)5 fragments. Here we show that conversion of α-helical (Glu)200 into amyloid-like ß-fibrils is dramatically accelerated in the presence of intrinsically disordered (Glu)5. While separately self-assembled fibrils of (Glu)200 and (Glu)5 reveal distinct morphological and infrared characteristics, accelerated fibrillation in mixed (Glu)200 and (Glu)5 leads to aggregates similar to neat (Glu)200 fibrils, even in excess of (Glu)5. According to molecular dynamics simulations and circular dichroism measurements, local events of "misfolding transfer" from (Glu)5 to (Glu)200 may play a key role in the initial stages of conformational dynamics underlying the observed phenomenon. Our results highlight chain-length polydispersity as a potent, although so-far unrecognized factor profoundly affecting the fibrillation propensity of homopolypeptides.


Assuntos
Amiloide/metabolismo , Ácido Glutâmico/química , Ácido Poliglutâmico/química , Amiloide/química , Dicroísmo Circular , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Dobramento de Proteína
13.
Biochemistry ; 54(49): 7193-202, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26582046

RESUMO

Dimethyl sulfoxide (DMSO) induced destabilization of insulin fibrils has been previously studied by Fourier transform infrared spectroscopy and interpreted in terms of secondary structural changes. The variation of this process for fibrils with different types of higher-order morphological structures remained unclear. Here, we utilize vibrational circular dichroism (VCD), which has been reported to provide a useful biophysical probe of the supramolecular chirality of amyloid fibrils, to characterize changes in the macroscopic chirality following DMSO-induced disassembly for two types of insulin fibrils formed under different conditions, at different reduced pH values with and without added salt and agitation. We confirm that very high concentrations of DMSO can disaggregate both types of insulin fibrils, which initially maintained a ß-sheet conformation and eventually changed their secondary structure to a disordered form. The two types responded to varying concentrations of DMSO, and disaggregation followed different mechanisms. Interconversion of specific insulin fibril morphological types also occurred during the destabilization process as monitored by VCD. With transmission electron microscopy, we were able to correlate the changes in VCD sign patterns to alteration of morphology of the insulin fibrils.


Assuntos
Dimetil Sulfóxido/química , Insulina/química , Complexos Multiproteicos/química , Dicroísmo Circular , Complexos Multiproteicos/ultraestrutura
14.
Langmuir ; 31(7): 2180-6, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25615018

RESUMO

Formation of amyloid fibrils is often facilitated in the presence of specific charge-compensating ions. Dissolved sodium chloride is known to accelerate insulin fibrillation at low pH that has been attributed to the shielding of electrostatic repulsion between positively charged insulin molecules by chloride ions. However, the subsequent fate of Cl(-) anions; that is, possible entrapment within elongating fibrils or escape into the bulk solvent, remains unclear. Here, we show that, while the presence of NaCl at the onset of insulin aggregation induces structural variants of amyloid with distinct fingerprint infrared features, a delayed addition of salt to fibrils that have been already formed in its absence and under quiescent conditions triggers a "condensation effect": amyloid superstructures with strong chiroptical properties are formed. Chloride ions appear to stabilize these superstructures in a manner similar to stabilization of DNA condensates by polyvalent cations. The concentration of residual chloride ions trapped within bovine insulin fibrils grown in 0.1 M NaCl, at pD 1.9, and rinsed extensively with water afterward is less than 1 anion per 16 insulin monomers (as estimated using ion chromatography) implying absence of defined solvent-sequestered nesting sites for chloride counterions. Our results have been discussed in the context of mechanisms of insulin aggregation.


Assuntos
Amiloide/química , DNA/química , Insulina/química , Cloreto de Sódio/química , Animais , Bovinos
15.
Langmuir ; 31(38): 10500-7, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26362583

RESUMO

Poly-L-glutamic acid (PLGA) forms amyloid-like ß2-fibrils with the main spectral component of vibrational amide I' band unusually shifted below 1600 cm(-1). This distinct infrared feature has been attributed to the presence of bifurcated hydrogen bonds coupling C═O and N-D (N-H) groups of the main chains to glutamate side chains. Here, we investigate how decreasing the chain length of PLGA affects its capacity to form ß2-fibrils. A series of acidified aqueous solutions of synthetic (l-Glu)n peptides (n ≈ 200, 10, 6, 5, 4, and 3) were incubated at high temperature. We observed that n = 4 is the critical chain length for which formation of aggregates with the ß2-like infrared features is still observed under such conditions. Interestingly, according to atomic force microscopy (AFM), the self-assembly of (L-Glu)n chains varying vastly in length produces fibrils with rather uniform diameters of approximately 4-6 nm. Kinetic experiments on (L-Glu)5 and (L-Glu)200 peptides indicate that the fibrillation is significantly accelerated not only in the presence of homologous seeds but also upon cross-seeding, suggesting thereby a common self-assembly theme for (L-Glu)n chains of various lengths. Our results are discussed in the context of mechanisms of amyloidogenic fibrillation of homopolypeptides.


Assuntos
Amiloide/química , Ácido Poliglutâmico/química , Cinética , Microscopia de Força Atômica
16.
Chirality ; 26(9): 580-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24816990

RESUMO

Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties.


Assuntos
Amiloide/química , Estereoisomerismo
17.
Int J Biol Macromol ; 257(Pt 2): 128680, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071871

RESUMO

Self-propagating polymorphism of amyloid fibrils is a distinct manifestation of non-equilibrium conditions under which protein aggregation typically occurs. Structural variants of fibrils can often be accessed through physicochemical perturbations of the de novo aggregation process. On the other hand, tiny changes in the amino acid sequence of the parent protein may also result in structurally distinguishable amyloid fibrils. Here, we show that in the presence of acetone, the low-pH fibrillization pathway of bovine insulin (BI) leads to a new type of amyloid with the infrared features (split amide I' band with the maximum at 1623 cm-1) bearing a striking resemblance to those of the previously reported fibrils from recombinant LysB31-ArgB32 human insulin analog formed in the absence of the co-solvent. Insulin fibrils formed in the presence ([BI-ace]) and absence ([BI]) of acetone cross-seed each other and pass their infrared features to the daughter generations of fibrils. We have used dimethyl sulfoxide (DMSO) coupled to in situ infrared spectroscopy measurements to probe the stability of fibrils against chemical denaturation. While both types of fibrils eventually undergo DMSO-induced disassembly coupled to a ß-sheet→coil transition, in the case of [BI-ace] amyloid, the denaturation is preceded by the fibrils transiently acquiring the [BI]-like infrared characteristics. We argue that this effect is caused by DMSO-induced dehydration of [BI-ace]. In support to this hypothesis, we show that, even in the absence of DMSO, the infrared features of [BI-ace] disappear upon drying. We discuss this very peculiar aspect of [BI-ace] fibrils in the context of recently accessed in silico models of plausible structural variants of insulin protofilaments.


Assuntos
Amiloide , Insulina , Animais , Bovinos , Humanos , Insulina/química , Amiloide/química , Acetona , Dimetil Sulfóxido/química , Sequência de Aminoácidos , Proteínas Amiloidogênicas
18.
Langmuir ; 29(1): 365-70, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23234567

RESUMO

Formation of amyloid fibrils is often associated with intriguing far-from-equilibrium phenomena such as conformational memory effects or flow-driven self-assembly. Insulin is a model amyloidogenic polypeptide forming distinct structural variants of fibrils, which self-propagate through seeding. According to infrared absorption, fibrils from bovine insulin ([BI]) and Lys(B31)-Arg(B32) human insulin analogue ([KR]) cross-seed each other and imprint distinct structural features in daughter fibrils. In the absence of preformed [KR] amyloid seeds, bovine insulin agitated at 60 °C converts into chiral amyloid superstructures exhibiting negative extrinsic Cotton effect in bound thioflavin T. However, when agitated bovine insulin is simultaneously cross-seeded with [KR] amyloid, daughter fibrils reveal a positive extrinsic Cotton effect. Our study indicates that dramatic changes in global properties of amyloid superstructures may emerge from subtle conformational-level variations in single fibrils (e.g., alignment and twist of ß-strands) that are encoded by memory effects.


Assuntos
Amiloide/química , Insulina/química , Dobramento de Proteína , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Hidrodinâmica , Microscopia de Força Atômica , Conformação Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Estereoisomerismo
19.
Langmuir ; 29(17): 5271-8, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23590193

RESUMO

Insulin is an amyloid-forming polypeptide built of two disulfide-linked chains (A and B), both themselves amyloidogenic. An interesting property of insulin is that agitation strongly influences the course of its aggregation, resulting in characteristic chiral superstructures of amyloid fibrils. Here, we investigate the self-assembly of these superstructures by comparing the quiescent and vortex-assisted aggregation of insulin and its individual A and B chains in the presence or absence of reducing agent tris(2-carboxyethyl)phosphine (TCEP). Our study shows that only the B chain in the presence of TCEP is converted into aggregates with morphology (according to atomic force microscopy) and optical activity (manifested as an extrinsic Cotton effect induced in bound thioflavin T) characteristic of amyloid superstructures that are normally formed by insulin in the absence of TCEP. In contrast to more rigid B-peptide fibrils, elongated aggregates of the A peptide become amorphous upon agitation. Moreover, the aggregation of equimolar mixture of both peptides does not produce highly ordered entities. Our results suggest that the dynamics of the B chain are the driving force for the assembly of superstructures, with the A chain being complicit as long as its own dynamics are controlled by the firm attachment to the B chain provided by the intact covalent structure of insulin.


Assuntos
Amiloide/química , Insulina/química , Tamanho da Partícula , Fosfinas/química , Conformação Proteica , Propriedades de Superfície
20.
J Phys Chem B ; 127(30): 6597-6607, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37492019

RESUMO

Canonical amyloid fibrils are composed of covalently identical polypeptide chains. Here, we employ kinetic assays, atomic force microscopy, infrared spectroscopy, circular dichroism, and molecular dynamics simulations to study fibrillization patterns of two chimeric peptides, ACC1-13E8 and ACC1-13K8, in which a potent amyloidogenic stretch derived from the N-terminal segment of the insulin A-chain (ACC1-13) is coupled to octaglutamate or octalysine segments, respectively. While large electric charges prevent aggregation of either peptide at neutral pH, stoichiometric mixing of ACC1-13E8 and ACC1-13K8 triggers rapid self-assembly of two-component fibrils driven by favorable Coulombic interactions. The low-symmetry nonpolar ACC1-13 pilot sequence is crucial in enforcing the fibrillar structure consisting of parallel ß-sheets as the self-assembly of free poly-E and poly-K chains under similar conditions results in amorphous antiparallel ß-sheets. Interestingly, ACC1-13E8 forms highly ordered fibrils also when paired with nonpolypeptide polycationic amines such as branched polyethylenimine, instead of ACC1-13K8. Such synthetic polycations are more effective in triggering the fibrillization of ACC1-13E8 than poly-K (or poly-E in the case of ACC1-13K8). The high conformational flexibility of these polyamines makes up for the apparent mismatch in periodicity of charged groups. The results are discussed in the context of mechanisms of heterogeneous disease-related amyloidogenesis.


Assuntos
Amiloide , Insulina , Amiloide/química , Insulina/química , Peptídeos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA