Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91.764
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(2): 257-270, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242082

RESUMO

The view of organelles and how they operate together has changed dramatically over the last two decades. The textbook view of organelles was that they operated largely independently and were connected by vesicular trafficking and the diffusion of signals through the cytoplasm. We now know that all organelles make functional close contacts with one another, often called membrane contact sites. The study of these sites has moved to center stage in cell biology as it has become clear that they play critical roles in healthy and developing cells and during cell stress and disease states. Contact sites have important roles in intracellular signaling, lipid metabolism, motor-protein-mediated membrane dynamics, organelle division, and organelle biogenesis. Here, we summarize the major conceptual changes that have occurred in cell biology as we have come to appreciate how contact sites integrate the activities of organelles.


Assuntos
Organelas , Biologia , Membrana Celular/metabolismo , Membranas Mitocondriais , Organelas/química , Organelas/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo
2.
Cell ; 185(23): 4333-4346.e14, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36257313

RESUMO

SARS-CoV-2 mRNA booster vaccines provide protection from severe disease, eliciting strong immunity that is further boosted by previous infection. However, it is unclear whether these immune responses are affected by the interval between infection and vaccination. Over a 2-month period, we evaluated antibody and B cell responses to a third-dose mRNA vaccine in 66 individuals with different infection histories. Uninfected and post-boost but not previously infected individuals mounted robust ancestral and variant spike-binding and neutralizing antibodies and memory B cells. Spike-specific B cell responses from recent infection (<180 days) were elevated at pre-boost but comparatively less so at 60 days post-boost compared with uninfected individuals, and these differences were linked to baseline frequencies of CD27lo B cells. Day 60 to baseline ratio of BCR signaling measured by phosphorylation of Syk was inversely correlated to days between infection and vaccination. Thus, B cell responses to booster vaccines are impeded by recent infection.


Assuntos
Linfócitos B , COVID-19 , Vacinas Virais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinação , Linfócitos B/imunologia , Vacinas de mRNA
3.
Cell ; 171(6): 1397-1410.e14, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29107331

RESUMO

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Camundongos , Fatores de Transcrição , Transcrição Gênica , Proteínas de Sinalização YAP
4.
Mol Cell ; 84(5): 822-838.e8, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38157845

RESUMO

Chromatin loops between gene pairs have been observed in diverse contexts in both flies and vertebrates. Combining high-resolution Capture-C, DNA fluorescence in situ hybridization, and genetic perturbations, we dissect the functional role of three loops between genes with related function during Drosophila embryogenesis. By mutating the loop anchor (but not the gene) or the gene (but not loop anchor), we disentangle loop formation and gene expression and show that the 3D proximity of paralogous gene loci supports their co-regulation. Breaking the loop leads to either an attenuation or enhancement of expression and perturbs their relative levels of expression and cross-regulation. Although many loops appear constitutive across embryogenesis, their function can change in different developmental contexts. Taken together, our results indicate that chromatin gene-gene loops act as architectural scaffolds that can be used in different ways in different contexts to fine-tune the coordinated expression of genes with related functions and sustain their cross-regulation.


Assuntos
Cromatina , Cromossomos , Animais , Hibridização in Situ Fluorescente , Cromatina/genética , Drosophila/genética
5.
Nat Rev Mol Cell Biol ; 20(6): 327-337, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886333

RESUMO

The spatial organization of the genome into compartments and topologically associated domains can have an important role in the regulation of gene expression. But could gene expression conversely regulate genome organization? Here, we review recent studies that assessed the requirement of transcription and/or the transcription machinery for the establishment or maintenance of genome topology. The results reveal different requirements at different genomic scales. Transcription is generally not required for higher-level genome compartmentalization, has only moderate effects on domain organization and is not sufficient to create new domain boundaries. However, on a finer scale, transcripts or transcription does seem to have a role in the formation of subcompartments and subdomains and in stabilizing enhancer-promoter interactions. Recent evidence suggests a dynamic, reciprocal interplay between fine-scale genome organization and transcription, in which each is able to modulate or reinforce the activity of the other.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Genoma Humano , Regiões Promotoras Genéticas , Transcrição Gênica , Animais , Cromatina/genética , Humanos
6.
Nature ; 626(7997): 207-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086418

RESUMO

Enhancers control gene expression and have crucial roles in development and homeostasis1-3. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the Drosophila melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system.


Assuntos
Aprendizado Profundo , Drosophila melanogaster , Embrião não Mamífero , Elementos Facilitadores Genéticos , Redes Neurais de Computação , Especificidade de Órgãos , Animais , Cromatina/genética , Cromatina/metabolismo , Conjuntos de Dados como Assunto , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Elementos Facilitadores Genéticos/genética , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Análise de Célula Única , Transposases/metabolismo , Biologia Sintética/métodos
7.
Nature ; 629(8011): 307-310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710931

RESUMO

Despite its Earth-like size and source material1,2, Venus is extremely dry3,4, indicating near-total water loss to space by means of hydrogen outflow from an ancient, steam-dominated atmosphere5,6. Such hydrodynamic escape likely removed most of an initial Earth-like 3-km global equivalent layer (GEL) of water but cannot deplete the atmosphere to the observed 3-cm GEL because it shuts down below about 10-100 m GEL5,7. To complete Venus water loss, and to produce the observed bulk atmospheric enrichment in deuterium of about 120 times Earth8,9, nonthermal H escape mechanisms still operating today are required10,11. Early studies identified these as resonant charge exchange12-14, hot oxygen impact15,16 and ion outflow17,18, establishing a consensus view of H escape10,19 that has since received only minimal updates20. Here we show that this consensus omits the most important present-day H loss process, HCO+ dissociative recombination. This process nearly doubles the Venus H escape rate and, consequently, doubles the amount of present-day volcanic water outgassing and/or impactor infall required to maintain a steady-state atmospheric water abundance. These higher loss rates resolve long-standing difficulties in simultaneously explaining the measured abundance and isotope ratio of Venusian water21,22 and would enable faster desiccation in the wake of speculative late ocean scenarios23. Design limitations prevented past Venus missions from measuring both HCO+ and the escaping hydrogen produced by its recombination; future spacecraft measurements are imperative.

8.
Nature ; 631(8020): 449-458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898281

RESUMO

De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.


Assuntos
Desenho Assistido por Computador , Aprendizado Profundo , Proteínas de Membrana , Dobramento de Proteína , Solubilidade , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estabilidade Proteica , Proteoma/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Motivos de Aminoácidos , Estudo de Prova de Conceito
9.
Nature ; 627(8003): 347-357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374256

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Assuntos
Diabetes Mellitus Tipo 2 , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Adipócitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Células Endoteliais/metabolismo , Células Enteroendócrinas , Epigenômica , Predisposição Genética para Doença/genética , Ilhotas Pancreáticas/metabolismo , Herança Multifatorial/genética , Doença Arterial Periférica/complicações , Doença Arterial Periférica/genética , Análise de Célula Única
10.
Nature ; 629(8010): 105-113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632407

RESUMO

Arctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5-7. This hampers the accuracy of global land carbon-climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9-2.0 °C] in air and 0.4 °C [CI 0.2-0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22-38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.


Assuntos
Respiração Celular , Ecossistema , Aquecimento Global , Tundra , Regiões Árticas , Carbono/metabolismo , Carbono/análise , Ciclo do Carbono , Conjuntos de Dados como Assunto , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Nitrogênio/análise , Plantas/metabolismo , Estações do Ano , Solo/química , Microbiologia do Solo , Temperatura , Fatores de Tempo
11.
Mol Cell ; 82(16): 2922-2924, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35985301

RESUMO

By systematically assessing the effects of depleting eight cofactors on enhancer activity, Neumayr et al. (2022) found that different enhancers have different requirements for some perceived universal cofactors. While some cofactors influence enhancer strength, others affect enhancer-promoter specificity.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas
12.
Nature ; 623(7988): 752-756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853128

RESUMO

Subduction related to the ancient supercontinent cycle is poorly constrained by mantle samples. Sublithospheric diamond crystallization records the release of melts from subducting oceanic lithosphere at 300-700 km depths1,2 and is especially suited to tracking the timing and effects of deep mantle processes on supercontinents. Here we show that four isotope systems (Rb-Sr, Sm-Nd, U-Pb and Re-Os) applied to Fe-sulfide and CaSiO3 inclusions within 13 sublithospheric diamonds from Juína (Brazil) and Kankan (Guinea) give broadly overlapping crystallization ages from around 450 to 650 million years ago. The intracratonic location of the diamond deposits on Gondwana and the ages, initial isotopic ratios, and trace element content of the inclusions indicate formation from a peri-Gondwanan subduction system. Preservation of these Neoproterozoic-Palaeozoic sublithospheric diamonds beneath Gondwana until its Cretaceous breakup, coupled with majorite geobarometry3,4, suggests that they accreted to and were retained in the lithospheric keel for more than 300 Myr during supercontinent migration. We propose that this process of lithosphere growth-with diamonds attached to the supercontinent keel by the diapiric uprise of depleted buoyant material and pieces of slab crust-could have enhanced supercontinent stability.

13.
Nature ; 614(7949): 659-663, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623548

RESUMO

Transmission spectroscopy1-3 of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres4,5. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species-in particular the primary carbon-bearing molecules6,7. Here we report a broad-wavelength 0.5-5.5 µm atmospheric transmission spectrum of WASP-39b8, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec's PRISM mode9 as part of the JWST Transiting Exoplanet Community Early Release Science Team Program10-12. We robustly detect several chemical species at high significance, including Na (19σ), H2O (33σ), CO2 (28σ) and CO (7σ). The non-detection of CH4, combined with a strong CO2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO2 (2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST's sensitivity to a rich diversity of exoplanet compositions and chemical processes.

14.
Nature ; 623(7989): 932-937, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38030780

RESUMO

Planets with radii between that of the Earth and Neptune (hereafter referred to as 'sub-Neptunes') are found in close-in orbits around more than half of all Sun-like stars1,2. However, their composition, formation and evolution remain poorly understood3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R⊕ to 2.85R⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.

15.
Mol Cell ; 81(17): 3623-3636.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270916

RESUMO

ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.


Assuntos
Bacillus subtilis/citologia , Citidina Trifosfato/metabolismo , Pirofosfatases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Membrana Celular/metabolismo , Cromossomos Bacterianos/genética , Citidina Trifosfato/fisiologia , Proteínas do Citoesqueleto/genética , Pirofosfatases/fisiologia
16.
Nat Rev Genet ; 23(5): 298-314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34880424

RESUMO

Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future.


Assuntos
Neoplasias , Mapeamento Cromossômico , Biologia Computacional , Variações do Número de Cópias de DNA , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Neoplasias/genética
17.
Annu Rev Biochem ; 81: 587-613, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22482904

RESUMO

Eukaryotic protein kinases are key regulators of cell processes. Comparison of the structures of protein kinase domains, both alone and in complexes, allows generalizations to be made about the mechanisms that regulate protein kinase activation. Protein kinases in the active state adopt a catalytically competent conformation upon binding of both the ATP and peptide substrates that has led to an understanding of the catalytic mechanism. Docking sites remote from the catalytic site are a key feature of several substrate recognition complexes. Mechanisms for kinase activation through phosphorylation, additional domains or subunits, by scaffolding proteins and by kinase dimerization are discussed.


Assuntos
Domínio Catalítico , Eucariotos/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Animais , Ativação Enzimática , Humanos , Estrutura Terciária de Proteína
18.
EMBO J ; 42(10): e112806, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36994542

RESUMO

Epithelial cells acquire mesenchymal phenotypes through epithelial-mesenchymal transition (EMT) during cancer progression. However, how epithelial cells retain their epithelial traits and prevent malignant transformation is not well understood. Here, we report that the long noncoding RNA LITATS1 (LINC01137, ZC3H12A-DT) is an epithelial gatekeeper in normal epithelial cells and inhibits EMT in breast and non-small cell lung cancer cells. Transcriptome analysis identified LITATS1 as a TGF-ß target gene. LITATS1 expression is reduced in lung adenocarcinoma tissues compared with adjacent normal tissues and correlates with a favorable prognosis in breast and non-small cell lung cancer patients. LITATS1 depletion promotes TGF-ß-induced EMT, migration, and extravasation in cancer cells. Unbiased pathway analysis demonstrated that LITATS1 knockdown potently and selectively potentiates TGF-ß/SMAD signaling. Mechanistically, LITATS1 enhances the polyubiquitination and proteasomal degradation of TGF-ß type I receptor (TßRI). LITATS1 interacts with TßRI and the E3 ligase SMURF2, promoting the cytoplasmic retention of SMURF2. Our findings highlight a protective function of LITATS1 in epithelial integrity maintenance through the attenuation of TGF-ß/SMAD signaling and EMT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Plasticidade Celular , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I
19.
N Engl J Med ; 390(4): 326-337, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078508

RESUMO

BACKGROUND: The combination of ibrutinib and venetoclax has been shown to improve outcomes in patients with chronic lymphocytic leukemia (CLL) as compared with chemoimmunotherapy. Whether ibrutinib-venetoclax and personalization of treatment duration according to measurable residual disease (MRD) is more effective than fludarabine-cyclophosphamide-rituximab (FCR) is unclear. METHODS: In this phase 3, multicenter, randomized, controlled, open-label platform trial involving patients with untreated CLL, we compared ibrutinib-venetoclax and ibrutinib monotherapy with FCR. In the ibrutinib-venetoclax group, after 2 months of ibrutinib, venetoclax was added for up to 6 years of therapy. The duration of ibrutinib-venetoclax therapy was defined by MRD assessed in peripheral blood and bone marrow and was double the time taken to achieve undetectable MRD. The primary end point was progression-free survival in the ibrutinib-venetoclax group as compared with the FCR group, results that are reported here. Key secondary end points were overall survival, response, MRD, and safety. RESULTS: A total of 523 patients were randomly assigned to the ibrutinib-venetoclax group or the FCR group. At a median of 43.7 months, disease progression or death had occurred in 12 patients in the ibrutinib-venetoclax group and 75 patients in the FCR group (hazard ratio, 0.13; 95% confidence interval [CI], 0.07 to 0.24; P<0.001). Death occurred in 9 patients in the ibrutinib-venetoclax group and 25 patients in the FCR group (hazard ratio, 0.31; 95% CI, 0.15 to 0.67). At 3 years, 58.0% of the patients in the ibrutinib-venetoclax group had stopped therapy owing to undetectable MRD. After 5 years of ibrutinib-venetoclax therapy, 65.9% of the patients had undetectable MRD in the bone marrow and 92.7% had undetectable MRD in the peripheral blood. The risk of infection was similar in the ibrutinib-venetoclax group and the FCR group. The percentage of patients with cardiac serious adverse events was higher in the ibrutinib-venetoclax group than in the FCR group (10.7% vs. 0.4%). CONCLUSIONS: MRD-directed ibrutinib-venetoclax improved progression-free survival as compared with FCR, and results for overall survival also favored ibrutinib-venetoclax. (Funded by Cancer Research UK and others; FLAIR ISRCTN Registry number, ISRCTN01844152; EudraCT number, 2013-001944-76.).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Linfocítica Crônica de Células B , Neoplasia Residual , Vidarabina , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Ciclofosfamida/administração & dosagem , Ciclofosfamida/efeitos adversos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Neoplasia Residual/patologia , Rituximab/administração & dosagem , Rituximab/efeitos adversos , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos , Fatores de Tempo , Vidarabina/administração & dosagem , Vidarabina/efeitos adversos , Vidarabina/análogos & derivados , Duração da Terapia
20.
Cell ; 148(3): 473-86, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22304916

RESUMO

Cell fate decisions are driven through the integration of inductive signals and tissue-specific transcription factors (TFs), although the details on how this information converges in cis remain unclear. Here, we demonstrate that the five genetic components essential for cardiac specification in Drosophila, including the effectors of Wg and Dpp signaling, act as a collective unit to cooperatively regulate heart enhancer activity, both in vivo and in vitro. Their combinatorial binding does not require any specific motif orientation or spacing, suggesting an alternative mode of enhancer function whereby cooperative activity occurs with extensive motif flexibility. A fraction of enhancers co-occupied by cardiogenic TFs had unexpected activity in the neighboring visceral mesoderm but could be rendered active in heart through single-site mutations. Given that cardiac and visceral cells are both derived from the dorsal mesoderm, this "dormant" TF binding signature may represent a molecular footprint of these cells' developmental lineage.


Assuntos
Drosophila melanogaster/citologia , Redes Reguladoras de Genes , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Mesoderma/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA