Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 440(7086): 940-3, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16612385

RESUMO

Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.


Assuntos
Antimaláricos/metabolismo , Artemisininas/metabolismo , Engenharia Genética , Malária Falciparum/tratamento farmacológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Animais , Antimaláricos/química , Antimaláricos/economia , Artemisia annua/enzimologia , Artemisia annua/genética , Artemisininas/química , Artemisininas/economia , Reatores Biológicos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Custos de Medicamentos/tendências , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Malária Falciparum/economia , Ácido Mevalônico/metabolismo , Dados de Sequência Molecular , Plasmodium falciparum , Sesquiterpenos/química , Sesquiterpenos/economia
2.
Nat Chem Biol ; 3(5): 274-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17438551

RESUMO

Terpenoids are a highly diverse class of natural products that have historically provided a rich source for discovery of pharmacologically active small molecules, such as paclitaxel (Taxol) and artemisinin. Unfortunately, these secondary metabolites are typically produced in low abundance in their host organism, and their isolation consequently suffers from low yields and high consumption of natural resources. Furthermore, chemical synthesis of terpenoids can also be difficult to scale for industrial production. For these reasons, an attractive alternative strategy is to engineer metabolic pathways for production of pharmaceuticals or their precursors in a microbial host such as Escherichia coli. A key step is developing methods to carry out cytochrome P450 (P450)-based oxidation chemistry in vivo. Toward this goal, we have assembled two heterologous pathways for the biosynthesis of plant-derived terpenoid natural products, and we present the first examples of in vivo production of functionalized terpenoids in E. coli at high titer using native plant P450s.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/metabolismo , Plantas/enzimologia , Terpenos/metabolismo , Artemisininas/química , Artemisininas/metabolismo , Escherichia coli/genética , Estrutura Molecular , Engenharia de Proteínas , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA