Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JMIR Form Res ; 6(2): e30410, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35107430

RESUMO

BACKGROUND: Adults with cardiovascular disease risk factors (CVRFs) are also at increased risk of developing cognitive decline and dementia. However, it is often difficult to study the relationships between CVRFs and cognitive function because cognitive assessment typically requires time-consuming in-person neuropsychological evaluations that may not be feasible for real-world situations. OBJECTIVE: We conducted a proof-of-concept study to determine if the association between CVRFs and cognitive function could be detected using web-based, self-administered cognitive tasks and CVRF assessment. METHODS: We recruited 239 participants aged ≥50 years (mean age 62.7 years, SD 8.8; 42.7% [n=102] female, 88.7% [n=212] White) who were enrolled in the Health eHeart Study, a web-based platform focused on cardiac disease. The participants self-reported CVRFs (hypertension, high cholesterol, diabetes, and atrial fibrillation) using web-based health surveys between August 2016 and July 2018. After an average of 3 years of follow-up, we remotely evaluated episodic memory, working memory, and executive function via the web-based Posit Science platform, BrainHQ. Raw data were normalized and averaged into 3 domain scores. We used linear regression models to examine the association between CVRFs and cognitive function. RESULTS: CVRF prevalence was 62.8% (n=150) for high cholesterol, 45.2% (n=108) for hypertension, 10.9% (n=26) for atrial fibrillation, and 7.5% (n=18) for diabetes. In multivariable models, atrial fibrillation was associated with worse working memory (ß=-.51, 95% CI -0.91 to -0.11) and worse episodic memory (ß=-.31, 95% CI -0.59 to -0.04); hypertension was associated with worse episodic memory (ß=-.27, 95% CI -0.44 to -0.11). Diabetes and high cholesterol were not associated with cognitive performance. CONCLUSIONS: Self-administered web-based tools can be used to detect both CVRFs and cognitive health. We observed that atrial fibrillation and hypertension were associated with worse cognitive function even in those in their 60s and 70s. The potential of mobile assessments to detect risk factors for cognitive aging merits further investigation.

2.
Neurobiol Aging ; 39: 82-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26923404

RESUMO

The precise physiologic function of many of the recently discovered Alzheimer's disease risk variants remains unknown. The downstream effects of genetic variants remain largely unexplored. We studied the relationship between the top 10 non-APOE genes with cortical and hippocampal atrophy as markers of neurodegeneration using 1.5T magnetic resonance imaging, 1-million single nucleotide polymorphism Illumina Human Omni-Quad array and Illumina Human BeadChip peripheral blood expression array data on 50 cognitively normal and 98 mild cognitive impairment subjects. After explicit matching of cortical and hippocampal morphology, we computed in 3D, the cortical thickness and hippocampal radial distance measures for each participant. Associations between the top 10 non-APOE genome-wide hits and neurodegeneration were explored using linear regression. Map-wise statistical significance was determined with permutations using threshold of p < 0.01. MS4A6A rs610932 and ABCA7 rs3764650 demonstrated significant associations with cortical and hippocampal atrophy. Exploratory MS4A6A and ABCA7 peripheral blood expression analyses revealed a similar pattern of associations with cortical neurodegeneration. To our knowledge, this is the first report of the effect of ABCA7 and MS4A6A on neurodegeneration.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Estudos de Associação Genética , Variação Genética/genética , Hipocampo/patologia , Proteínas de Membrana/genética , Transportadores de Cassetes de Ligação de ATP/sangue , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Atrofia/genética , Feminino , Humanos , Masculino , Proteínas de Membrana/sangue , Pessoa de Meia-Idade
3.
Alzheimers Dement (Amst) ; 1(2): 187-193, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26207261

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. BDNF function is adversely affected by amyloid beta (Aß) in AD. BDNF levels in brain and peripheral tissues are lower in patients with AD and MCI, than in controls. Here we examined the association between plasma levels of BDNF and amyloid deposition in the brain measured with Pittsburgh Compound B (PiB). METHOD: Our dataset consisted of 18 AD, 56 mild cognitive impairment (MCI) and 3 normal control (NC) Alzheimer's Disease Neuroimaging Initiative-1 (ADNI1) subjects with available [11C] PiB and peripheral blood protein data. MRI-coregistered PET data was smoothed with a 15 mm kernel and mapped onto 3D hemispheric models using the warping deformations computed in cortical pattern matching of the associated MRI scans. We applied linear regression to examine in 3D the associations between BDNF and PiB SUVR, while adjusting for age and sex. We used permutation statistics thresholded at p<0.01 for multiple comparisons correction. RESULTS: Plasma BDNF levels showed significant negative associations with left greater than right amyloid burden in the lateral temporal, inferior parietal, inferior frontal, anterior and posterior cingulate, and orbitofrontal regions (left pcorrected=0.03). CONCLUSIONS: As hypothesized, lower plasma levels of BDNF were significantly associated with widespread brain amyloidosis.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25346870

RESUMO

The hallmark of Alzheimer's disease (AD) is declarative memory loss, but deficits in semantic fluency are also observed. We assessed how semantic fluency relates to cortical atrophy to identify specific regions that play a role in the loss of access to semantic information. Whole-brain structural magnetic resonance imaging (MRI) data were analyzed from 9 Normal Control (NC)(M=76.7, SD=5.6), 40 Mild Cognitive Impairment (MCI) (M=74.4, SD=8.6), and 10 probable AD (M=72.4, SD=8.0) subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). They all were administered the Category Fluency (CF) animals and vegetables tests. Poorer semantic fluency was associated with bilateral cortical atrophy of the inferior parietal lobule (Brodman areas (BA) 39 and 40) and BA 6, 8, and 9 in the frontal lobe, as well as BA 22 in the temporal lobe. More diffuse frontal associations were seen in the left hemisphere involving BA 9, 10, 32, 44, 45, and 46. Additional cortical atrophy was seen in the temporoparietal (BA 37) and the right parastriate (BA 19, 18) cortices. Associations were more diffuse for performance on vegetable fluency than animal fluency. The permutation-corrected map-wise significance for CF animals was pcorrected=0.01 for the left hemisphere, and pcorrected=0.06 for the right hemisphere. The permutation-corrected map-wise significance for CF vegetables was pcorrected=0.009 for the left hemisphere, and pcorrected=0.03 for the right hemisphere. These results demonstrate the profound effect of cortical atrophy on semantic fluency. Specifically, tapping into semantic knowledge involves the frontal lobe in addition to the language cortices of the temporoparietal region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA