RESUMO
Although there have been major advances in elucidating the functional biology of the human brain, relatively little is known of its cellular and molecular organization. Here we report a large-scale characterization of the expression of â¼1,000 genes important for neural functions by in situ hybridization at a cellular resolution in visual and temporal cortices of adult human brains. These data reveal diverse gene expression patterns and remarkable conservation of each individual gene's expression among individuals (95%), cortical areas (84%), and between human and mouse (79%). A small but substantial number of genes (21%) exhibited species-differential expression. Distinct molecular signatures, comprised of genes both common between species and unique to each, were identified for each major cortical cell type. The data suggest that gene expression profile changes may contribute to differential cortical function across species, and in particular, a shift from corticosubcortical to more predominant corticocortical communications in the human brain.
Assuntos
Perfilação da Expressão Gênica , Neocórtex/metabolismo , Lobo Temporal/metabolismo , Córtex Visual/metabolismo , Adulto , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Neocórtex/citologia , Neurônios/metabolismo , Especificidade da Espécie , Lobo Temporal/citologia , Córtex Visual/citologiaRESUMO
Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of approximately 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.