RESUMO
MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.
Assuntos
Alphavirus , Animais , Humanos , Febre de Chikungunya , Vírus Chikungunya/química , Mamíferos , Receptores Virais/metabolismoRESUMO
Variability in how individuals respond to pathogens is a hallmark of infectious disease, yet the basis for individual variation in host response is often poorly understood. The titer of infectious virus among individual mosquitoes infected with arboviruses is frequently observed to vary by several orders of magnitude in a single experiment, even when the mosquitoes are highly inbred. To better understand the basis for this titer variation, we sequenced populations of Sindbis virus (SINV) obtained from individual infected Aedes aegypti mosquitoes that, despite being from a highly inbred laboratory colony, differed in their titers of infectious virus by approximately 10,000-fold. We observed genetic differences between these virus populations that indicated the virus present in the midguts of low titer mosquitoes was less fit than that of high titer mosquitoes, possibly due to founder effects that occurred during midgut infection. Furthermore, we found dramatic differences in the specific infectivity or SI (the ratio of infectious units/viral genome equivalents) between these virus populations, with the SI of low titer mosquitoes being up to 10,000-fold lower than that of high titer mosquitoes. Despite having similar amounts of viral genomes, low titer mosquitoes appeared to contain less viral particles, suggesting that viral genomes were packaged into virions less efficiently than in high titer mosquitoes. Finally, antibiotic treatment, which has been shown to suppress mosquito antiviral immunity, caused an increase in SI. Our results indicate that the extreme variation that is observed in SINV infectious titer between individual Ae. aegypti mosquitoes is due to both genetic differences between virus populations and to differences in the proportion of genomes that are packaged into infectious particles.
Assuntos
Aedes , Infecções por Alphavirus , Humanos , Animais , Sindbis virus/genética , Sequência de Bases , Mosquitos VetoresRESUMO
The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.
Assuntos
Aedes , Mosquitos Vetores , Animais , Feminino , Masculino , Filogenia , Mosquitos Vetores/genética , Aedes/genética , Aedes/metabolismo , Splicing de RNARESUMO
West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related flaviviruses that can cause encephalitis in humans and related diseases in animals. In nature, both are transmitted by Culex, with wild birds, including jays, sparrows, and robins, serving as vertebrate hosts. WNV and SLEV circulate in the same environments and have recently caused concurrent disease outbreaks in humans. The extent that coinfection of mosquitoes or birds may alter transmission dynamics, however, is not well characterized. We therefore sought to determine if coinfection alters infection kinetics and virus levels in birds and infection rates in mosquitoes. Accordingly, American robins (Turdus migratorius), two species of mosquitoes, and vertebrate and invertebrate cells were infected with WNV and/or SLEV to assess how simultaneous exposure may alter infection outcomes. There was variable impact of coinfection in vertebrate cells, with some evidence that SLEV can suppress WNV replication. However, robins had comparable viremia and antibody responses regardless of coinfection. Conversely, in Culex cells and mosquitoes, we saw a minimal impact of simultaneous exposure to both viruses on replication, with comparable infection, dissemination, and transmission rates in singly infected and coinfected mosquitoes. Importantly, while WNV and SLEV levels in coinfected mosquito midguts were positively correlated, we saw no correlation between them in salivary glands and saliva. These results reveal that while coinfection can occur in both avian and mosquito hosts, the viruses minimally impact one another. The potential for coinfection to alter virus population structure or the likelihood of rare genotypes emerging remains unknown.IMPORTANCEWest Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related viruses that are transmitted by the same mosquitoes and infect the same birds in nature. Both viruses circulate in the same regions and have caused concurrent outbreaks in humans. It is possible that mosquitoes, birds, and/or humans could be infected with both WNV and SLEV simultaneously, as has been observed with Zika, chikungunya, and dengue viruses. To study the impact of coinfection, we experimentally infected vertebrate and invertebrate cells, American robins, and two Culex species with WNV and/or SLEV. Robins were efficiently coinfected, with no impact of coinfection on virus levels or immune response. Similarly, in mosquitoes, coinfection did not impact infection rates, and mosquitoes could transmit both WNV and SLEV together. These results reveal that WNV and SLEV coinfection in birds and mosquitoes can occur in nature, which may impact public health and human disease risk.
Assuntos
Anticorpos Antivirais , Doenças das Aves , Coinfecção , Culex , Vírus da Encefalite de St. Louis , Mosquitos Vetores , Viremia , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Vírus do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/imunologia , Coinfecção/virologia , Coinfecção/imunologia , Culex/virologia , Mosquitos Vetores/virologia , Viremia/virologia , Vírus da Encefalite de St. Louis/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Doenças das Aves/virologia , Doenças das Aves/transmissão , Doenças das Aves/imunologia , Encefalite de St. Louis/virologia , Encefalite de St. Louis/transmissão , Replicação Viral , Aves Canoras/virologia , Formação de Anticorpos , Aves/virologiaRESUMO
Arthropod-borne viruses (arboviruses) require replication across a wide range of temperatures to perpetuate. While vertebrate hosts tend to maintain temperatures of approximately 37°C-40°C, arthropods are subject to ambient temperatures which can have a daily fluctuation of > 10°C. Temperatures impact vector competence, extrinsic incubation period, and mosquito survival unimodally, with optimal conditions occurring at some intermediate temperature. In addition, the mean and range of daily temperature fluctuations influence arbovirus perpetuation and vector competence. The impact of temperature on arbovirus genetic diversity during systemic mosquito infection, however, is poorly understood. Therefore, we determined how constant extrinsic incubation temperatures of 25°C, 28°C, 32°C, and 35°C control Zika virus (ZIKV) vector competence and population dynamics within Aedes aegypti and Aedes albopictus mosquitoes. We also examined fluctuating temperatures which better mimic field conditions in the tropics. We found that vector competence varied in a unimodal manner for constant temperatures peaking between 28°C and 32°C for both Aedes species. Transmission peaked at 10 days post-infection for Aedes aegypti and 14 days for Aedes albopictus. Conversely, fluctuating temperature decreased vector competence. Using RNA-seq to characterize ZIKV population structure, we identified that temperature alters the selective environment in unexpected ways. During mosquito infection, constant temperatures more often elicited positive selection whereas fluctuating temperatures led to strong purifying selection in both Aedes species. These findings demonstrate that temperature has multiple impacts on ZIKV biology, including major effects on the selective environment within mosquitoes.
Assuntos
Aedes/virologia , Aptidão Genética , Mosquitos Vetores/virologia , Seleção Genética , Temperatura , Infecção por Zika virus/transmissão , Zika virus/crescimento & desenvolvimento , Aedes/classificação , Aedes/genética , Animais , Chlorocebus aethiops , Saliva/virologia , Células Vero , Carga Viral , Infecção por Zika virus/virologiaRESUMO
Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNß, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.
Assuntos
COVID-19/fisiopatologia , COVID-19/transmissão , Peromyscus/virologia , Doenças dos Roedores/transmissão , Animais , Encéfalo/patologia , Encéfalo/virologia , COVID-19/patologia , Modelos Animais de Doenças , Reservatórios de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Doenças dos Roedores/patologia , Doenças dos Roedores/virologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação ViralRESUMO
We evaluated clinical and socioeconomic burdens of respiratory disease in banana farm workers in Guatemala. We offered all eligible workers enrollment during June 15-December 30, 2020, and annually, then tracked them for influenza-like illnesses (ILI) through self-reporting to study nurses, sentinel surveillance at health posts, and absenteeism. Workers who had ILI submitted nasopharyngeal swab specimens for testing for influenza virus, respiratory syncytial virus, and SARS-CoV-2, then completed surveys at days 0, 7, and 28. Through October 10, 2021, a total of 1,833 workers reported 169 ILIs (12.0 cases/100 person-years), and 43 (25.4%) were laboratory-confirmed infections with SARS-CoV-2 (3.1 cases/100 person-years). Workers who had SARS-CoV-2âpositive ILIs reported more frequent anosmia, dysgeusia, difficulty concentrating, and irritability and worse clinical and well-being severity scores than workers who had test resultânegative ILIs. Workers who had positive results also had greater absenteeism and lost income. These results support prioritization of farm workers in Guatemala for COVID-19 vaccination.
Assuntos
COVID-19 , Influenza Humana , Viroses , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Influenza Humana/epidemiologia , Vacinas contra COVID-19 , Teste para COVID-19 , Viroses/epidemiologiaRESUMO
Point-of-care (POC) methods currently available for detecting SARS-CoV-2 infections still lack accuracy. Here, we report the development of a highly sensitive electrochemical immunoassay capable of quantitatively detecting the presence of the SARS-CoV-2 virus in patient nasopharyngeal samples using stencil-printed carbon electrodes (SPCEs) functionalized with capture antibodies targeting the SARS-CoV-2 nucleocapsid protein (N protein). Samples are added to the electrode surface, followed by horseradish peroxidase (HRP)-conjugated detection antibodies also targeting the SARS-CoV-2 N protein. The concentration of the virus in samples is quantified using chronoamperometry in the presence of 3,3'5,5'-tetramethylbenzidine. Limits of detection equivalent to less than 50 plaque forming units/mL (PFU/mL) were determined with virus sample volumes of 20 µL. No cross-reactivity was detected with the influenza virus and other coronavirus N proteins. Patient nasopharyngeal samples were tested as part of a proof-of-concept clinical study where samples were also tested using the gold-standard real-time quantitative polymerase chain reaction (RT-qPCR) method. Preliminary results from a data set of 22 samples demonstrated a clinical specificity of 100% (n = 9 negative samples according to RT-qPCR) and a clinical sensitivity of 70% for samples with RT-PCR cycle threshold (Ct) values under 30 (n = 10) and 100% for samples with Ct values under 25 (n = 5), which complies with the World Health Organization (WHO) criteria for POC COVID-19 diagnostic tests. Our functionalized SPCEs were also validated against standard plaque assays, and very good agreement was found between both methods (R2 = 0.9993, n = 6), suggesting that our assay could be used to assess patient infectivity. The assay currently takes 70 min from sampling to results.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Imunoensaio/métodos , Proteínas do Nucleocapsídeo , Sensibilidade e EspecificidadeRESUMO
Zika virus (ZIKV; Flaviviridae, Flavivirus) is an arthropod-borne infection that can result in severe outcomes, particularly in fetuses infected in utero It has been assumed that infection by ZIKV, as well as other viruses, is largely initiated by individual virus particles binding to and entering a cell. However, recent studies have demonstrated that multiple virus particles are frequently delivered to a cell simultaneously and that this collective particle delivery enhances infection. ZIKV is maintained in nature between Aedes aegypti mosquitos and vertebrate hosts, including humans. Human infection is initiated through the injection of a relatively small initial inoculum comprised of a genetically complex virus population. Since most mutations decrease virus fitness, collective particle transmission could benefit ZIKV and other arthropod-borne diseases by facilitating the maintenance of genetic complexity and adaptability during infection or through other mechanisms. Therefore, we utilized a barcoded ZIKV to quantify the number of virus genomes that initiate a plaque. We found that individual plaques contain a mean of 10 infecting viral genomes (range, 1 to 212). Few plaques contained more than two dominant genomes. To determine whether multigenome infectious units consist of collectively transmitting virions, infectious units of ZIKV were then separated mechanically by centrifugation, and heavier fractions were found to contain more genomes per plaque-forming unit, with larger diameters. Finally, larger/heavier infectious units reformed after removal. These data suggest that ZIKV populations consist of a variety of infectious unit sizes, likely mostly made up of aggregates, and only rarely begin with a single virus genome.IMPORTANCE The arthropod-borne Zika virus (ZIKV) infects humans and can cause severe neurological sequelae, particularly in fetuses infected in utero How this virus has been able to spread across vast geological ranges and evolve in new host populations is not yet understood. This research demonstrates a novel mechanism of ZIKV transmission through multigenome aggregates, providing insight into ZIKV evolution, immunologic evasion, and better future therapeutic design. This study shows that ZIKV plaques result from collections of genomes rather than individual genomes, increasing the potential for interactions between ZIKV genotypes.
Assuntos
Genoma Viral/genética , Polimorfismo Genético , Infecção por Zika virus/virologia , Zika virus/genética , Aedes/virologia , Animais , Linhagem Celular , Variações do Número de Cópias de DNA , Tamanho do Genoma , Genótipo , Humanos , Mosquitos Vetores/virologia , Temperatura , Vírion/metabolismo , Replicação Viral , Zika virus/crescimento & desenvolvimento , Infecção por Zika virus/transmissãoRESUMO
Zika virus (ZIKV) has the unusual capacity to circumvent natural alternating mosquito-human transmission and be directly transmitted human-to-human via sexual and vertical routes. The impact of direct transmission on ZIKV evolution and adaptation to vertebrate hosts is unknown. Here we show that molecularly barcoded ZIKV rapidly adapted to a mammalian host during direct transmission chains in mice, coincident with the emergence of an amino acid substitution previously shown to enhance virulence. In contrast, little to no adaptation of ZIKV to mice was observed following chains of direct transmission in mosquitoes or alternating host transmission. Detailed genetic analyses revealed that ZIKV evolution in mice was generally more convergent and subjected to more relaxed purifying selection than in mosquitoes or alternate passages. These findings suggest that prevention of direct human transmission chains may be paramount to resist gains in ZIKV virulence.Importance We used experimental evolution to model chains of direct and indirect Zika virus (ZIKV) transmission by serially passaging a synthetic swarm of molecularly barcoded ZIKV within and between mosquitoes and mice. We observed that direct mouse transmission chains facilitated a rapid increase in ZIKV replication and enhanced virulence in mice. These findings demonstrate that ZIKV is capable of rapid adaptation to a vertebrate host and indicate that direct human-to-human transmission could pose a greater threat to public health than currently realized.
RESUMO
Epidemiological synergy between outbreaks of viruses transmitted by Aedes aegypti mosquitoes, such as chikungunya, dengue, and Zika viruses, has resulted in coinfection of humans with multiple viruses. Despite the potential impact on public health, we know only little about the occurrence and consequences of such coinfections. Here, we review the impact of coinfection on clinical disease in humans, discuss the possibility for co-transmission from mosquito to human, and describe a role for modeling transmission dynamics at various levels of co-transmission. Solving the mystery of virus coinfections will reveal whether they should be viewed as a serious concern for public health.
Assuntos
Arbovírus/patogenicidade , Coinfecção/epidemiologia , Saúde Pública/métodos , Aedes/virologia , Animais , Febre de Chikungunya/transmissão , Vírus Chikungunya , Coinfecção/metabolismo , Coinfecção/virologia , Dengue/transmissão , Vírus da Dengue , Surtos de Doenças , Humanos , Mosquitos Vetores/virologia , Zika virus , Infecção por Zika virus/transmissãoRESUMO
The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses of humans. The interactions between DENVs and the human host that lead to asymptomatic, mild, or severe disease are poorly understood, in part, because laboratory models are poor surrogates for human DENV disease. Virologists are interested in how the properties of DENVs replicating in people compare with virions propagated on laboratory cell lines, which are widely used for research and vaccine development. Using clinical samples from a DENV type 1 epidemic in Sri Lanka and new ultrasensitive assays, we compared the properties of DENVs in human plasma and after one passage on laboratory cell lines. DENVs in plasma were 50- to 700-fold more infectious than cell culture-grown viruses. DENVs produced by laboratory cell lines were structurally immature and hypersensitive to neutralization by human antibodies compared with DENVs circulating in people. Human plasma and cell culture-derived virions had identical genome sequences, indicating that these phenotypic differences were due to the mature state of plasma virions. Several dengue vaccines are under development. Recent studies indicate that vaccine-induced antibodies that neutralized DENVs in cell culture assays were not sufficient for protecting people from DENV infections. Our results about structural differences between DENVs produced in humans versus cell lines may be key to understanding vaccine failure and developing better models for vaccine evaluation.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Animais , Células Cultivadas , Chlorocebus aethiops , Reações Cruzadas , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Genoma Viral/genética , Humanos , Reação em Cadeia da Polimerase , Sri Lanka/epidemiologia , Células VeroRESUMO
The unwinding of double-stranded RNA intermediates is critical for the replication and packaging of flavivirus RNA genomes. This unwinding activity is achieved by the ATP-dependent nonstructural protein 3 (NS3) helicase. In previous studies, we investigated the mechanism of energy transduction between the ATP and RNA binding pockets using molecular dynamics simulations and enzymatic characterization. Our data corroborated the hypothesis that motif V is a communication hub for this energy transduction. More specifically, mutations T407A and S411A in motif V exhibit a hyperactive helicase phenotype, leading to the regulation of translocation and unwinding during replication. However, the effect of these mutations on viral infection in cell culture and in vivo is not well understood. Here, we investigated the role of motif V in viral replication using West Nile virus (Kunjin subtype) T407A and S411A mutants (T407A and S411A Kunjin, respectively) in cell culture and in vivo We were able to recover S411A Kunjin but unable to recover T407A Kunjin. Our results indicated that S411A Kunjin decreased viral infection and increased cytopathogenicity in cell culture compared to wild-type (WT) Kunjin. Similarly, decreased infection rates in surviving S411A Kunjin-infected Culex quinquefasciatus mosquitoes were observed, but S411A Kunjin infection resulted in increased mortality compared to WT Kunjin infection. Additionally, S411A Kunjin infection increased viral dissemination and saliva positivity rates in surviving mosquitoes compared to WT Kunjin infection. These data suggest that S411A Kunjin increases viral pathogenesis in mosquitoes. Overall, these data indicate that NS3 motif V may play a role in the pathogenesis, dissemination, and transmission efficiency of Kunjin virus.IMPORTANCE Kunjin and West Nile viruses belong to the arthropod-borne flaviviruses, which can result in severe symptoms, including encephalitis, meningitis, and death. Flaviviruses have expanded into new populations and emerged as novel pathogens repeatedly in recent years, demonstrating that they remain a global threat. Currently, there are no approved antiviral therapeutics against either Kunjin or West Nile viruses. Thus, there is a pressing need for understanding the pathogenesis of these viruses in humans. In this study, we investigated the role of the Kunjin virus helicase on infection in cell culture and in vivo This work provides new insight into how flaviviruses control pathogenesis and mosquito transmission through the nonstructural protein 3 helicase.
Assuntos
Culicidae/virologia , RNA Helicases/genética , Serina Endopeptidases/genética , Proteínas não Estruturais Virais/genética , Febre do Nilo Ocidental/mortalidade , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/enzimologia , Vírus do Nilo Ocidental/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Culex/virologia , Feminino , Flavivirus/genética , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Domínios e Motivos de Interação entre Proteínas , Células Vero , Replicação Viral , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/patogenicidadeRESUMO
Zika virus (ZIKV) can establish infection in immune privileged sites such as the testes, eye, and placenta. Whether ZIKV infection of white blood cells is required for dissemination of the virus to immune privileged sites has not been definitively shown. To assess whether initial ZIKV replication in myeloid cell populations is critical for dissemination during acute infection, recombinant ZIKVs were generated that could not replicate in these specific cells. ZIKV was cell restricted by insertion of a complementary sequence to a myeloid-specific microRNA in the 3' untranslated region. Following inoculation of a highly sensitive immunodeficient mouse model, crucial immune parameters, such as quantification of leukocyte cell subsets, cytokine and chemokine secretion, and viremia, were assessed. Decreased neutrophil numbers in the spleen were observed during acute infection with myeloid-restricted ZIKV that precluded the generation of viremia and viral dissemination to peripheral organs. Mice inoculated with a nontarget microRNA control ZIKV demonstrated increased expression of key cytokines and chemokines critical for neutrophil and monocyte recruitment and increased neutrophil influx in the spleen. In addition, ZIKV-infected Ly6Chi monocytes were identified in vivo in the spleen. Mice inoculated with myeloid-restricted ZIKV had a decrease in Ly6Chi ZIKV RNA-positive monocytes and a lack of inflammatory cytokine production compared to mice inoculated with control ZIKV.IMPORTANCE Myeloid cells, including monocytes, play a crucial role in immune responses to pathogens. Monocytes have also been implicated as "Trojan horses" during viral infections, carrying infectious virus particles to immune privileged sites and/or to sites protected by physical blood-tissue barriers, such as the blood-testis barrier and the blood-brain barrier. In this study, we found that myeloid cells are crucial to Zika virus (ZIKV) pathogenesis. By engineering ZIKV clones to encode myeloid-specific microRNA target sequences, viral replication was inhibited in myeloid cells by harnessing the RNA interference pathway. Severely immunodeficient mice inoculated with myeloid-restricted ZIKV did not demonstrate clinical signs of disease and survived infection. Furthermore, viral dissemination to peripheral organs was not observed in these mice. Lastly, we identified Ly6Cmid/hi murine monocytes as the major myeloid cell population that disseminates ZIKV.
Assuntos
Linhagem da Célula/imunologia , Hospedeiro Imunocomprometido , Células Mieloides/imunologia , Viremia/imunologia , Replicação Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Linhagem da Célula/genética , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/imunologia , Monócitos/imunologia , Monócitos/patologia , Monócitos/virologia , Células Mieloides/classificação , Células Mieloides/patologia , Células Mieloides/virologia , Neutrófilos/imunologia , Neutrófilos/patologia , Neutrófilos/virologia , RNA Viral/genética , RNA Viral/imunologia , Transdução de Sinais , Baço/imunologia , Baço/patologia , Baço/virologia , Testículo/imunologia , Testículo/patologia , Testículo/virologia , Viremia/genética , Viremia/patologia , Viremia/virologia , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/patologia , Infecção por Zika virus/virologiaRESUMO
BACKGROUND: SARS-CoV-2 has swept across the globe, causing millions of deaths worldwide. Though most survive, many experience symptoms of COVID-19 for months after acute infection. Successful prevention and treatment of acute COVID-19 infection and its associated sequelae is dependent on in-depth knowledge of viral pathology across the spectrum of patient phenotypes and physiologic responses. Longitudinal biobanking provides a valuable resource of clinically integrated, easily accessed, and quality-controlled samples for researchers to study differential multi-organ system responses to SARS-CoV-2 infection, post-acute sequelae of COVID-19 (PASC), and vaccination. METHODS: Adults with a history of a positive SARS-CoV-2 nasopharyngeal PCR are actively recruited from the community or hospital settings to enroll in the Northern Colorado SARS-CoV-2 Biorepository (NoCo-COBIO). Blood, saliva, stool, nasopharyngeal specimens, and extensive clinical and demographic data are collected at 4 time points over 6 months. Patients are assessed for PASC during longitudinal follow-up by physician led symptom questionnaires and physical exams. This clinical trial registration is NCT04603677 . RESULTS: We have enrolled and collected samples from 119 adults since July 2020, with 66% follow-up rate. Forty-nine percent of participants assessed with a symptom surveillance questionnaire (N = 37 of 75) had PASC at any time during follow-up (up to 8 months post infection). Ninety-three percent of hospitalized participants developed PASC, while 23% of those not requiring hospitalization developed PASC. At 90-174 days post SARS-CoV-2 diagnosis, 67% of all participants had persistent symptoms (N = 37 of 55), and 85% percent of participants who required hospitalization during initial infection (N = 20) still had symptoms. The most common symptoms reported after 15 days of infection were fatigue, loss of smell, loss of taste, exercise intolerance, and cognitive dysfunction. CONCLUSIONS: Patients who were hospitalized for COVID-19 were significantly more likely to have PASC than those not requiring hospitalization, however 23% of patients who were not hospitalized also developed PASC. This patient-matched, multi-matrix, longitudinal biorepository from COVID-19 survivors with and without PASC will allow for current and future research to better understand the pathophysiology of disease and to identify targeted interventions to reduce risk for PASC. Registered 27 October 2020 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04603677 .
Assuntos
Bancos de Espécimes Biológicos , Teste para COVID-19/métodos , COVID-19/complicações , SARS-CoV-2/genética , Sobreviventes , Adulto , Idoso , COVID-19/sangue , COVID-19/epidemiologia , COVID-19/patologia , COVID-19/virologia , Colorado/epidemiologia , Progressão da Doença , Feminino , Seguimentos , Hospitalização , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Manejo de Espécimes , Adulto Jovem , Síndrome de COVID-19 Pós-AgudaRESUMO
Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes.
Assuntos
Anopheles , Mosquitos Vetores , Animais , Abelhas , Criopreservação/métodos , Humanos , Resistência a Inseticidas/genética , Controle de Mosquitos , Mosquitos Vetores/genéticaRESUMO
Defining the complex dynamics of Zika virus (ZIKV) infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a "synthetic swarm" whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics.
Assuntos
Evolução Biológica , Biblioteca Gênica , Transmissão Vertical de Doenças Infecciosas , Macaca mulatta/genética , Mosquitos Vetores , Infecção por Zika virus/complicações , Zika virus/classificação , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Macaca mulatta/virologia , Masculino , Viremia , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologiaRESUMO
We conducted a serosurvey of 230 persons in Maine, USA, who had been bitten by Ixodes scapularis or I. cookei ticks. We documented seropositivity for Borrelia burgdorferi (13.9%) and B. miyamotoi (2.6%), as well as a single equivocal result (0.4%) for Powassan encephalitis virus.