Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 153(22): 224306, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317314

RESUMO

To advance our quest to understand the role of low energy electrons in biomolecular systems, we performed investigations on dissociative electron attachment (DEA) to gas-phase N-ethylformamide (NEF) and N-ethylacetamide (NEA) molecules. Both molecules contain the amide bond, which is the linkage between two consecutive amino acid residues in proteins. Thus, their electron-induced dissociation can imitate the resonant behavior of the DEA process in more complex biostructures. Our experimental results indicate that in these two molecules, the dissociation of the amide bond results in a double resonant structure with peaks at ∼5 eV and 9 eV. We also determined the energy position of resonant states for several negative ions, i.e., the other dissociation products from NEF and NEA. Our predictions of dissociation channels were supported by density functional theory calculations of the corresponding threshold energies. Our results and those previously reported for small amides and peptides imply the fundamental nature for breakage of the amide bond through the DEA process.


Assuntos
Acetamidas/química , Formamidas/química , Ânions/química , Elétrons , Gases/química , Peptídeos/química , Termodinâmica
2.
Eur Phys J D At Mol Opt Phys ; 75(10): 274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744506

RESUMO

Studies on electron interactions with formamide (FA) clusters promote scientific interest as a model system to understand phenomena relevant to astrophysical, prebiotic, and radiobiological processes. In this work, mass spectrometric detection of cationic species for both small bare and microhydrated formamide clusters was performed at an electron ionization of 70 eV. Furthermore, a comparative analysis of the cluster spectra with the literature-reported gas-phase spectra is presented and discussed, revealing different reaction channels affected by the cluster environment. This study is essential in developing our understanding of both low-energy electron phenomena in clusters that can bridge the complexity gap between gas and realistic systems and the effect of hydration on electron-induced processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA