Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(18): 185002, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144895

RESUMO

We report the first experimental observation of nonlinear standing waves excited by plasma-series-resonance-enhanced harmonics in low pressure, very high frequency, parallel plate, capacitively coupled plasmas. Spatial structures of the harmonics of the magnetic field, measured by a magnetic probe, are in very good agreement with simulations based on a nonlinear electromagnetics model. At relatively low pressure, the nonlinear sheath motion generates high-order harmonics that can be strongly enhanced near the series resonance frequencies. Satisfying certain conditions, such nonlinear harmonics induce radial standing waves, with voltage and current maxima on axis, resulting in center-high plasma density. Excitation of higher harmonics is suppressed at higher pressures.

2.
Rev Sci Instrum ; 89(10): 105104, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399790

RESUMO

Accurate magnetic measurements in radio frequency capacitively coupled plasmas (CCP) are challenging due to the presence of inherently strong electric fields and relatively weak magnetic fields. In this work, a new B-dot probe circuit is presented, comprising two variable capacitors in a tunable series resonance circuit, with a center-tapped, step-up transformer. The output characteristics of the probe are predicted using two distinct equivalent circuit models, one for the differential mode and the other for the common mode. A Helmholtz coil and a Faraday cup are used for experimental validation of the predicted probe output. By tuning the two variable capacitors in the circuit, the magnetic probe can achieve improved signal-to-noise ratio by amplifying the inductive signal, while suppressing capacitive coupling interference. Using the newly designed probe, magnetic measurements in typical CCP are presented.

3.
J Res Natl Inst Stand Technol ; 100(4): 473-494, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-29151756

RESUMO

Over the past few years multidimensional self-consistent plasma simulations including complex chemistry have been developed which are promising tools for furthering our understanding of reactive gas plasmas and for reactor design and optimization. These simulations must be benchmarked against experimental data obtained in well-characterized systems such as the Gaseous Electronics Conference (GEC) reference cell. Two-dimensional simulations relevant to the GEC Cell are reviewed in this paper with emphasis on fluid simulations. Important features observed experimentally, such as off-axis maxima in the charge density and hot spots of metastable species density near the electrode edges in capacitively-coupled GEC cells, have been captured by these simulations.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 2): 046405, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599314

RESUMO

A streamer coupling theory is developed to describe the formation of homogenous emission and the high propagation speed of emission patterns in near-atmospheric pressure discharges. By considering the effects of both electron diffusion and electronic drift in the streamer head, the minimum required preionization level n(min) for the formation of streamer coupling is found to be dependent on electric field strength, gas pressure, and electron temperature. The final stage of discharge is a microdischarge, when the preionization level n(0) is smaller than n(min). However, when n(0) is larger than n(min), streamers can couple to each other and form a glowlike discharge, and the homogeneity and propagation speed of the emission pattern in the streamer coupling head increases with the preionization level. The streamer coupling model can also be possibly used to explain many phenomenon in near-atmospheric pressure discharges, such as the bulletlike luminous discharge when atmospheric pressure plasma jets eject into ambient air.

5.
Nano Lett ; 5(12): 2563-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16351216

RESUMO

We report a radically different approach to the versatile fabrication of nanometer-scale preselected patterns over large areas. Standard lithography, thin film deposition, and etching are used to fabricate arrays of ion-focusing microlenses (e.g., small round holes through a metal/insulator structure) on a substrate such as a silicon wafer. The substrate is then placed in a vacuum chamber, a broad-area collimated beam of ions is directed at the substrate, and electric potentials are applied to the lens arrays such that the ions focus at the bottoms of the holes (e.g., on the wafer surface). When the wafer is tilted off normal (with respect to the ion beam axis), the focal points in each hole are laterally displaced, allowing the focused beamlets to be rastered across the hole bottoms. In this "nanopantography" process, the desired pattern is replicated simultaneously in many closely spaced holes over an area limited only by the size of the broad-area ion beam. With the proper choice of ions and downstream gaseous ambient, the method can be used to deposit or etch materials. Data show that simultaneous impingement of an Ar(+) beam and a Cl(2) effusive beam on an array of 950-nm-diam lenses can be used to etch 10-nm-diam features into a Si substrate, a reduction of 95x. Simulations indicate that the focused "beamlet" diameters scale directly with lens diameter, thus a minimum feature size of approximately 1 nm should be possible with 90-nm-diam lenses that are at the limit of current photolithography. We expect nanopantography to become a viable method for overcoming one of the main obstacles in practical nanoscale fabrication: rapid, large-scale fabrication of virtually any shape and material nanostructure. Unlike all other focused ion or electron beam writing techniques, this self-aligned method is virtually unaffected by vibrations, thermal expansion, and other alignment problems that usually plague standard nanofabrication methods. This is because the ion focusing optics are built on the wafer.


Assuntos
Cristalização/métodos , Eletroquímica/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Silício/química , Conformação Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA