Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 14(1): 15160, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956132

RESUMO

In order to survive and replicate, Salmonella has evolved mechanisms to gain access to intestinal epithelial cells of the crypt. However, the impact of Salmonella Typhimurium on stem cells and progenitors, which are responsible for the ability of the intestinal epithelium to renew and protect itself, remains unclear. Given that intestinal organoids growth is sustained by stem cells and progenitors activity, we have used this model to document the effects of Salmonella Typhimurium infection on epithelial proliferation and differentiation, and compared it to an in vivo model of Salmonella infection in mice. Among gut segments, the caecum was preferentially targeted by Salmonella. Analysis of infected crypts and organoids demonstrated increased length and size, respectively. mRNA transcription profiles of infected crypts and organoids pointed to upregulated EGFR-dependent signals, associated with a decrease in secretory cell lineage differentiation. To conclude, we show that organoids are suited to mimic the impact of Salmonella on stem cells and progenitors cells, carrying a great potential to drastically reduce the use of animals for scientific studies on that topic. In both models, the EGFR pathway, crucial to stem cells and progenitors proliferation and differentiation, is dysregulated by Salmonella, suggesting that repeated infections might have consequences on crypt integrity and further oncogenesis.


Assuntos
Diferenciação Celular , Receptores ErbB , Organoides , Infecções por Salmonella , Salmonella typhimurium , Células-Tronco , Animais , Organoides/microbiologia , Células-Tronco/metabolismo , Camundongos , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Receptores ErbB/metabolismo , Receptores ErbB/genética , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Proliferação de Células , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Br J Pharmacol ; 181(16): 2725-2749, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637276

RESUMO

BACKGROUND AND PURPOSE: Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH: The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS: We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS: Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.


Assuntos
Quimotripsina , Mucosa Intestinal , Receptor PAR-1 , Receptor PAR-2 , Animais , Humanos , Camundongos , Quimotripsina/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transdução de Sinais
3.
Biochim Biophys Acta ; 1813(5): 1111-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21167218

RESUMO

The importance of extracellular calcium in epidermal differentiation and intra-epidermal cohesion has been recognized for many years. Darier disease (DD) was the first genetic skin disease caused by abnormal epidermal calcium homeostasis to be identified. DD is characterized by loss of cell-to-cell adhesion and abnormal keratinization. DD is caused by genetic defects in ATP2A2 encoding the sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2). SERCA2 is a calcium pump of the endoplasmic reticulum (ER) transporting Ca(2+) from the cytosol to the lumen of ER. ATP2A2 mutations lead to loss of Ca(2+) transport by SERCA2 resulting in decreased ER Ca(2+) concentration in Darier keratinocytes. Here, we review the role of SERCA2 pumps and calcium in normal epidermis, and we discuss the consequences of ATP2A2 mutations on Ca(2+) signaling in DD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Assuntos
Cálcio/metabolismo , Doença de Darier/metabolismo , Homeostase , Modelos Biológicos , Pele/metabolismo , Pele/patologia , Animais , Doença de Darier/enzimologia , Humanos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
4.
Int J Cancer ; 129(2): 295-306, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20830706

RESUMO

Ptf1-p48 is a pancreas-specific bHLH transcriptional protein, which, in the normal adult pancreas, shows a restricted expression in acinar cells where it is predominantly localized in the nucleus and activates the transcription of exocrine-specific genes. Ptf1-p48 partners with two proteins to form the PTF1 active complex: a bHLH E-protein and suppressor of hairless RBP-J. Cytoplasmic mislocalization of Ptf1-p48 has been reported in pancreatic pathologies, suggesting its contribution in the early steps of pancreatic carcinogenesis. The aim of the our work was to elucidate the mechanisms regulating Ptf1-p48 subcellular localization. We hypothesized a role of Id proteins acting in a dominant-negative fashion by heterodimerizing with bHLH proteins. We reproduced Ptf1-p48 cytoplasmic mislocalization in acinar AR4-2J cells and demonstrated that a proliferative signal elicited by gastrin leads to increases in Id3 protein expression and levels of Id3/E47 and Id3/Ptf1-p48 interactions, and a decrease in the level of E47/Ptf1-p48 interaction. By contrast, Id3 silencing reversed the cytoplasmic mislocalization of Ptf1-p48 induced by gastrin. As E47 is responsible for the nuclear import of the PTF1 complex, disruption of this complex via Id3 interactions with both E47 and Ptf1-p48 appears to induce cytoplasmic mislocalization of Ptf1-p48. We then found that Ptf1-p48 is either absent or mislocalized in the cytoplasm and Id3 is overexpressed in human and murine pancreatic preneoplastic lesions. Our data provide novel insight into the regulation of Ptf1-p48 function and provide evidence that Ptf1-p48 cytoplasmic mislocalization and Id3 overexpression are early events in pancreatic cancer progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Inibidoras de Diferenciação/fisiologia , Proteínas de Neoplasias/fisiologia , Fatores de Transcrição/metabolismo , Adenocarcinoma/metabolismo , Animais , Citoplasma/metabolismo , Modelos Animais de Doenças , Humanos , Proteínas Inibidoras de Diferenciação/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Transporte Proteico , Coelhos , Ratos
5.
Mucosal Immunol ; 14(3): 667-678, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674762

RESUMO

Imbalance between proteases and their inhibitors plays a crucial role in the development of Inflammatory Bowel Diseases (IBD). Increased elastolytic activity is observed in the colon of patients suffering from IBD. Here, we aimed at identifying the players involved in elastolytic hyperactivity associated with IBD and their contribution to the disease. We revealed that epithelial cells are a major source of elastolytic activity in healthy human colonic tissues and this activity is greatly increased in IBD patients, both in diseased and distant sites of inflammation. This study identified a previously unrevealed production of elastase 2A (ELA2A) by colonic epithelial cells, which was enhanced in IBD patients. We demonstrated that ELA2A hyperactivity is sufficient to lead to a leaky epithelial barrier. Epithelial ELA2A hyperactivity also modified the cytokine gene expression profile with an increase of pro-inflammatory cytokine transcripts, while reducing the expression of pro-resolving and repair factor genes. ELA2A thus appears as a novel actor produced by intestinal epithelial cells, which can drive inflammation and loss of barrier function, two essentials pathophysiological hallmarks of IBD. Targeting ELA2A hyperactivity should thus be considered as a potential target for IBD treatment.


Assuntos
Colo/patologia , Inflamação/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Elastase de Leucócito/metabolismo , Adulto , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Imunidade nas Mucosas , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Junções Íntimas/metabolismo , Regulação para Cima
6.
J Crohns Colitis ; 15(9): 1528-1541, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33609354

RESUMO

BACKGROUND AND AIMS: Intestinal epithelial cells [IECs] from inflammatory bowel disease [IBD] patients exhibit an excessive induction of endoplasmic reticulum stress [ER stress] linked to altered intestinal barrier function and inflammation. Colonic tissues and the luminal content of IBD patients are also characterized by increased serine protease activity. The possible link between ER stress and serine protease activity in colitis-associated epithelial dysfunctions is unknown. We aimed to study the association between ER stress and serine protease activity in enterocytes and its impact on intestinal functions. METHODS: The impact of ER stress induced by Thapsigargin on serine protease secretion was studied using either human intestinal cell lines or organoids. Moreover, treating human intestinal cells with protease-activated receptor antagonists allowed us to investigate ER stress-resulting molecular mechanisms that induce proteolytic activity and alter intestinal epithelial cell biology. RESULTS: Colonic biopsies from IBD patients exhibited increased epithelial trypsin-like activity associated with elevated ER stress. Induction of ER stress in human intestinal epithelial cells displayed enhanced apical trypsin-like activity. ER stress-induced increased trypsin activity destabilized intestinal barrier function by increasing permeability and by controlling inflammatory mediators such as C-X-C chemokine ligand 8 [CXCL8]. The deleterious impact of ER stress-associated trypsin activity was specifically dependent on the activation of protease-activated receptors 2 and 4. CONCLUSIONS: Excessive ER stress in IECs caused an increased release of trypsin activity that, in turn, altered intestinal barrier function, promoting the development of inflammatory process.


Assuntos
Colite Ulcerativa/patologia , Doença de Crohn/patologia , Estresse do Retículo Endoplasmático/fisiologia , Enterócitos/fisiologia , Absorção Intestinal/fisiologia , Tripsina/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Colite Ulcerativa/etiologia , Colite Ulcerativa/metabolismo , Doença de Crohn/etiologia , Doença de Crohn/metabolismo , Humanos , Organoides , Tapsigargina
7.
J Crohns Colitis ; 15(5): 787-799, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33201214

RESUMO

BACKGROUND AND AIMS: Thrombin levels in the colon of Crohn's disease patients have recently been found to be elevated 100-fold compared with healthy controls. Our aim was to determine whether and how dysregulated thrombin activity could contribute to local tissue malfunctions associated with Crohn's disease. METHODS: Thrombin activity was studied in tissues from Crohn's disease patients and healthy controls. Intracolonic administration of thrombin to wild-type or protease-activated receptor-deficient mice was used to assess the effects and mechanisms of local thrombin upregulation. Colitis was induced in rats and mice by the intracolonic administration of trinitrobenzene sulphonic acid. RESULTS: Active forms of thrombin were increased in Crohn's disease patient tissues. Elevated thrombin expression and activity were associated with intestinal epithelial cells. Increased thrombin activity and expression were also a feature of experimental colitis in rats. Colonic exposure to doses of active thrombin comparable to what is found in inflammatory bowel disease tissues caused mucosal damage and tissue dysfunctions in mice, through a mechanism involving both protease-activated receptors -1 and -4. Intracolonic administration of the thrombin inhibitor dabigatran, as well as inhibition of protease-activated receptor-1, prevented trinitrobenzene sulphonic acid-induced colitis in rodent models. CONCLUSIONS: Our data demonstrated that increased local thrombin activity, as it occurs in the colon of patients with inflammatory bowel disease, causes mucosal damage and inflammation. Colonic thrombin and protease-activated receptor-1 appear as possible mechanisms involved in mucosal damage and loss of function and therefore represent potential therapeutic targets for treating inflammatory bowel disease.


Assuntos
Doença de Crohn/metabolismo , Receptores Ativados por Proteinase/metabolismo , Trombina/metabolismo , Animais , Estudos de Casos e Controles , Feminino , Humanos , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Piridinas/farmacologia , Ratos , Ratos Wistar , Regulação para Cima
8.
Biol Sex Differ ; 10(1): 47, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492202

RESUMO

BACKGROUND: Sexual dimorphism in biological responses is a critical knowledge for therapeutic proposals. However, gender differences in intestinal stem cell physiology have been poorly studied. Given the important role of the protease-activated receptor PAR2 in the control of colon epithelial primitive cells and cell cycle genes, we have performed a sex-based comparison of its expression and of the effects of PAR2 activation or knockout on cell proliferation and survival functions. METHODS: Epithelial primitive cells isolated from colons from male and female mice were cultured as colonoids, and their number and size were measured. PAR2 activation was triggered by the addition of SLIGRL agonist peptide in the culture medium. PAR2-deficient mice were used to study the impact of PAR2 expression on colon epithelial cell culture and gene expression. RESULTS: Colonoids from female mice were more abundant and larger compared to males, and these differences were further increased after PAR2 activation by specific PAR2 agonist peptide. The proliferation of male epithelial cells was lower compared to females but was specifically increased in PAR2 knockout male cells. PAR2 expression was higher in male colon cells compared to females and controlled the gene expression and activation of key negative signals of the primitive cell proliferation. This PAR2-dependent brake on the proliferation of male colon primitive cells was correlated with stress resistance. CONCLUSIONS: Altogether, these data demonstrate that there is a sexual dimorphism in the PAR2-dependent regulation of primitive cells of the colon crypt.


Assuntos
Colo/citologia , Receptor PAR-2/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/fisiologia , Receptor PAR-2/genética , Caracteres Sexuais
9.
Nat Commun ; 10(1): 3224, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324782

RESUMO

Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin.


Assuntos
Bactérias/metabolismo , Biofilmes , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , Trombina/metabolismo , Animais , Linhagem Celular , Colo/microbiologia , Neoplasias do Colo/microbiologia , Epitélio/microbiologia , Homeostase , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Pele , Trombina/genética , Bexiga Urinária
10.
J Invest Dermatol ; 134(7): 1961-1970, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24390139

RESUMO

Darier disease (DD) is a severe dominant genetic skin disorder characterized by the loss of cell-to-cell adhesion and abnormal keratinization. The defective gene, ATP2A2, encodes sarco/endoplasmic reticulum (ER) Ca2+ -ATPase isoform 2 (SERCA2), a Ca2+ -ATPase pump of the ER. Here we show that Darier keratinocytes (DKs) display biochemical and morphological hallmarks of constitutive ER stress with increased sensitivity to ER stressors. Desmosome and adherens junctions (AJs) displayed features of immature adhesion complexes: expression of desmosomal cadherins (desmoglein 3 (Dsg3) and desmocollin 3 (Dsc3)) and desmoplakin was impaired at the plasma membrane, as well as E-cadherin, ß-, α-, and p120-catenin staining. Dsg3, Dsc3, and E-cadherin showed perinuclear staining and co-immunostaining with ER markers, indicative of ER retention. Consistent with these abnormalities, intercellular adhesion strength was reduced as shown by a dispase mechanical dissociation assay. Exposure of normal keratinocytes to the SERCA2 inhibitor thapsigargin recapitulated these abnormalities, supporting the role of loss of SERCA2 function in impaired desmosome and AJ formation. Remarkably, treatment of DKs with the orphan drug Miglustat, a pharmacological chaperone, restored mature AJ and desmosome formation, and improved adhesion strength. These results point to an important contribution of ER stress in DD pathogenesis and provide the basis for future clinical evaluation of Miglustat in Darier patients.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Adesão Celular/fisiologia , Doença de Darier , Estresse do Retículo Endoplasmático/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , 1-Desoxinojirimicina/farmacologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Caderinas/metabolismo , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Doença de Darier/tratamento farmacológico , Doença de Darier/metabolismo , Doença de Darier/patologia , Desmossomos/efeitos dos fármacos , Desmossomos/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Tapsigargina/farmacologia , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA