Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 506(7488): 349-54, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24499819

RESUMO

Graphene nanoribbons will be essential components in future graphene nanoelectronics. However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about ten nanometres between scattering events, resulting in minimum sheet resistances of about one kilohm per square. Here we show that 40-nanometre-wide graphene nanoribbons epitaxially grown on silicon carbide are single-channel room-temperature ballistic conductors on a length scale greater than ten micrometres, which is similar to the performance of metallic carbon nanotubes. This is equivalent to sheet resistances below 1 ohm per square, surpassing theoretical predictions for perfect graphene by at least an order of magnitude. In neutral graphene ribbons, we show that transport is dominated by two modes. One is ballistic and temperature independent; the other is thermally activated. Transport is protected from back-scattering, possibly reflecting ground-state properties of neutral graphene. At room temperature, the resistance of both modes is found to increase abruptly at a particular length--the ballistic mode at 16 micrometres and the other at 160 nanometres. Our epitaxial graphene nanoribbons will be important not only in fundamental science, but also--because they can be readily produced in thousands--in advanced nanoelectronics, which can make use of their room-temperature ballistic transport properties.

2.
Nano Lett ; 14(7): 3755-60, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24940641

RESUMO

Topological insulators are guaranteed to support metallic surface states on an insulating bulk, and one should thus expect that the electronic transport in these materials is dominated by the surfaces states. Alas, due to the high remaining bulk conductivity, it is challenging to achieve surface-dominated transport. Here we use nanoscale four-point setups with a variable contact distance on an atomically clean surface of bulk-insulating Bi2Te2Se. We show that the transport at 30 K is two-dimensional rather than three-dimensional, that is, surface-dominated, and we find a surface state mobility of 390(30) cm(2) V(-1) s(-1) at 30 K at a carrier concentration of 8.71(7) × 10(12) cm(-2).

3.
J Phys Condens Matter ; 31(21): 214001, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-30790785

RESUMO

Electronic properties of low dimensional structures on surfaces can be comprehensively explored by surface transport experiments. However, the surface sensitivity of this technique to atomic structures comes along with the control of bulk related electron paths and internal interfaces. Here we analyzed the role of Schottky-barriers and space charge layers for Si-surfaces. By means of a metal submonolayer coverage deposited on vicinal Si(1 1 1), we reliably accessed subsurface transport channels via angle- and temperature-dependent in situ transport measurements. In particular, high temperature treatments performed under ultra high vacuum conditions led to the formation of surface-near bulk defects, e.g. SiC-interstitials. Obviously, these defects act as p-type dopants and easily overcompensate lightly n-doped Si substrates.

4.
J Phys Condens Matter ; 25(39): 392001, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23945317

RESUMO

Graphene structures of finite size are expected to reveal exceptional electronic and magnetic properties which are highly attractive for future nano-technological applications. In this study we have looked at the edge-states in graphene nanoribbons (GNR) grown by self-assembly on mesa structured SiC(0001) templates. By means of a 4-tip STM/SEM system, both local spectroscopy and lateral transport have been performed in situ on the same nanostructures. The conductance in these structures was found to be e(2)/h for temperatures up to 400 K. Scanning tunneling spectroscopy clearly reveals edge-localized states on these ribbons. The local bonding of these ribbons to their support turns out to be essential in order to preserve the metallicity of the edge-states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA