Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem J ; 478(11): 2121-2143, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34032269

RESUMO

The Ser/Thr kinase MAP4K4, like other GCKIV kinases, has N-terminal kinase and C-terminal citron homology (CNH) domains. MAP4K4 can activate c-Jun N-terminal kinases (JNKs), and studies in the heart suggest it links oxidative stress to JNKs and heart failure. In other systems, MAP4K4 is regulated in striatin-interacting phosphatase and kinase (STRIPAK) complexes, in which one of three striatins tethers PP2A adjacent to a kinase to keep it dephosphorylated and inactive. Our aim was to understand how MAP4K4 is regulated in cardiomyocytes. The rat MAP4K4 gene was not properly defined. We identified the first coding exon of the rat gene using 5'-RACE, we cloned the full-length sequence and confirmed alternative-splicing of MAP4K4 in rat cardiomyocytes. We identified an additional α-helix C-terminal to the kinase domain important for kinase activity. In further studies, FLAG-MAP4K4 was expressed in HEK293 cells or cardiomyocytes. The Ser/Thr protein phosphatase inhibitor calyculin A (CalA) induced MAP4K4 hyperphosphorylation, with phosphorylation of the activation loop and extensive phosphorylation of the linker between the kinase and CNH domains. This required kinase activity. MAP4K4 associated with myosin in untreated cardiomyocytes, and this was lost with CalA-treatment. FLAG-MAP4K4 associated with all three striatins in cardiomyocytes, indicative of regulation within STRIPAK complexes and consistent with activation by CalA. Computational analysis suggested the interaction was direct and mediated via coiled-coil domains. Surprisingly, FLAG-MAP4K4 inhibited JNK activation by H2O2 in cardiomyocytes and increased myofibrillar organisation. Our data identify MAP4K4 as a STRIPAK-regulated kinase in cardiomyocytes, and suggest it regulates the cytoskeleton rather than activates JNKs.


Assuntos
Processamento Alternativo , Proteínas de Ligação a Calmodulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação a Calmodulina/genética , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Fosforilação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Homologia de Sequência
2.
Regul Toxicol Pharmacol ; 65(1): 38-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23044254

RESUMO

Cardiovascular (CV) safety concerns are a significant source of drug development attrition in the pharmaceutical industry today. Though current nonclinical testing paradigms have largely prevented catastrophic CV events in Phase I studies, many challenges relating to the inability of current nonclinical safety testing strategies to model patient outcomes persist. Contemporary approaches include a spectrum of evaluations of CV structure and function in a variety of laboratory animal species. These approaches might be improved with a more holistic integration of these evaluations in repeat-dose studies, addition of novel endpoints with greater sensitivity and translational application, and use of more relevant animal models. Particular opportunities present with advances in imaging capabilities applicable to rodent and non-rodent species, technical capabilities for measuring CV function in repeat-dose animal studies, detection and quantitation of microRNAs and wider use of alternative animal models. Strategic application of these novel opportunities considering putative CV risk associated with the molecular drug target as well as inherent risks present in the target patient population could tailor or 'personalize' nonclinical safety assessment as a more translational evaluation. This paper is a call to action for the clinical and nonclinical drug safety communities to assess these opportunities to determine their utility in filling potential gaps in our current cardiovascular safety testing paradigms.


Assuntos
Doenças Cardiovasculares/induzido quimicamente , Desenho de Fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Modelos Animais de Doenças , Indústria Farmacêutica/métodos , Determinação de Ponto Final , Humanos , MicroRNAs/metabolismo , Projetos de Pesquisa , Medição de Risco/métodos , Especificidade da Espécie
3.
Toxicol Sci ; 176(1): 224-235, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298455

RESUMO

Integrating nonclinical in vitro, in silico, and in vivo datasets holistically can improve hazard characterization and risk assessment. In pharmaceutical development, cardiovascular liabilities are a leading cause of compound attrition. Prior to clinical studies, functional cardiovascular data are generated in single-dose safety pharmacology telemetry studies, with structural pathology data obtained from repeat-dose toxicology studies with limited concurrent functional endpoints, eg, electrocardiogram via jacketed telemetry. Relationships between datasets remain largely undetermined. To address this gap, a cross-pharma collaboration collated functional and structural data from 135 compounds. Retrospective functional data were collected from good laboratory practice conscious dog safety pharmacology studies: effects defined as hemodynamic blood pressure or heart rate changes. Morphologic pathology findings (mainly degeneration, vacuolation, inflammation) from related toxicology studies in the dog (3-91 days repeat-dosing) were reviewed, harmonized, and location categorized: cardiac muscle (myocardium, epicardium, endocardium, unspecified), atrioventricular/aortic valves, blood vessels. The prevalence of cardiovascular histopathology changes was 11.1% of compounds, with 53% recording a functional blood pressure or heart rate change. Correlations were assessed using the Mantel-Haenszel Chi-square trend test, identifying statistically significant associations between cardiac muscle pathology and (1) decreased blood pressure, (2) increased heart rate, and between cardiovascular vessel pathology and increased heart rate. Negative predictive values were high, suggesting few compounds cause repeat-dose cardiovascular structural change in the absence of functional effects in single-dose safety pharmacology studies. Therefore, observed functional changes could prompt moving (sub)chronic toxicology studies forward, to identify cardiovascular liabilities earlier in development, and reduce late-stage attrition.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Animais , Pressão Sanguínea , Cães , Avaliação Pré-Clínica de Medicamentos , Eletrocardiografia , Frequência Cardíaca , Hemodinâmica , Masculino , Estudos Retrospectivos , Telemetria
4.
Artigo em Inglês | MEDLINE | ID: mdl-27039257

RESUMO

INTRODUCTION: The Safety Pharmacology Society (SPS) and National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs) conducted a survey and workshop in 2015 to define current industry practices relating to housing of non-rodents during telemetry recordings in safety pharmacology and toxicology studies. The aim was to share experiences, canvas opinion on the study procedures/designs that could be used and explore the barriers to social housing. METHODS: Thirty-nine sites, either running studies (Sponsors or Contract Research Organisations, CROs) and/or outsourcing work responded to the survey (51% from Europe; 41% from USA). RESULTS: During safety pharmacology studies, 84, 67 and 100% of respondents socially house dogs, minipigs and non-human primates (NHPs) respectively on non-recording days. However, on recording days 20, 20 and 33% of respondents socially house the animals, respectively. The main barriers for social housing were limitations in the recording equipment used, study design and animal temperament/activity. During toxicology studies, 94, 100 and 100% of respondents socially house dogs, minipigs and NHPs respectively on non-recording days. However, on recording days 31, 25 and 50% of respondents socially house the animals, respectively. The main barriers for social housing were risk of damage to and limitations in the recording equipment used, food consumption recording and temperament/activity of the animals. CONCLUSIONS: Although the majority of the industry does not yet socially house animals during telemetry recordings in safety pharmacology and toxicology studies, there is support to implement this refinement. Continued discussions, sharing of best practice and data from companies already socially housing, combined with technology improvements and investments in infrastructure are required to maintain the forward momentum of this refinement across the industry.


Assuntos
Hemodinâmica/efeitos dos fármacos , Abrigo para Animais , Meio Social , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Farmacologia/métodos , Primatas , Segurança , Inquéritos e Questionários , Suínos , Porco Miniatura , Telemetria , Temperamento , Toxicologia/métodos
5.
J Med Chem ; 53(8): 3183-97, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20329799

RESUMO

The relevance of the melanocortin system to sexual activity is well established, and nonselective peptide agonists of the melanocortin receptors have shown evidence of efficacy in human sexual dysfunction. The role of the MC4 receptor subtype has received particular scrutiny, but the sufficiency of its selective activation in potentiating sexual response has remained uncertain owing to conflicting data from studies in preclinical species. We describe here the discovery of a novel series of small-molecule MC4 receptor agonists derived from library hit 2. The addition of methyl substituents at C3 and C5 of the 4-phenylpiperidin-4-ol ring was found to be markedly potency-enhancing, enabling the combination of low nanomolar potencies with full rule-of-five compliance. In general, the series shows only micromolar activity at other melanocortin receptors. Our preferred compound 40a provided significant systemic exposure in humans on both sublingual and oral administration and was safe and well tolerated up to the maximum tested dose. In a pilot clinical study of male erectile dysfunction, the highest dose of 40a tested (200 mg) provided a similar level of efficacy to sildenafil.


Assuntos
Disfunção Erétil/tratamento farmacológico , Piperidinas/síntese química , Pirrolidinas/síntese química , Receptor Tipo 4 de Melanocortina/agonistas , Administração Intranasal , Administração Oral , Administração Sublingual , Animais , Disponibilidade Biológica , Ensaios Clínicos Fase I como Assunto , Cristalografia por Raios X , Cães , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Masculino , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Piperidinas/farmacocinética , Piperidinas/farmacologia , Pirrolidinas/farmacocinética , Pirrolidinas/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA