RESUMO
Intestinal epithelial cells are covered by the brush border, which consists of densely packed microvilli. The Intermicrovillar Adhesion Complex (IMAC) links the microvilli and is required for proper brush border organization. Whether microvillus crosslinking is involved in the intestinal barrier function or colitis is currently unknown. We investigate the role of microvillus crosslinking in colitis in mice with deletion of the IMAC component CDHR5. Electron microscopy shows pronounced brush border defects in CDHR5-deficient mice. The defects result in severe mucosal damage after exposure to the colitis-inducing agent DSS. DSS increases the permeability of the mucus layer and brings bacteria in direct contact with the disorganized brush border of CDHR5-deficient mice. This correlates with bacterial invasion into the epithelial cell layer which precedes epithelial apoptosis and inflammation. Single-cell RNA sequencing data of patients with ulcerative colitis reveals downregulation of CDHR5 in enterocytes of diseased areas. Our results provide experimental evidence that a combination of microvillus crosslinking defects with increased permeability of the mucus layer sensitizes to inflammatory bowel disease.
RESUMO
BACKGROUND: Prostate cancer ranks as the second most frequently diagnosed cancer in men worldwide. Recent research highlights the crucial roles IL6ST-mediated signaling pathways play in the development and progression of various cancers, particularly through hyperactivated STAT3 signaling. However, the molecular programs mediated by IL6ST/STAT3 in prostate cancer are poorly understood. METHODS: To investigate the role of IL6ST signaling, we constitutively activated IL6ST signaling in the prostate epithelium of a Pten-deficient prostate cancer mouse model in vivo and examined IL6ST expression in large cohorts of prostate cancer patients. We complemented these data with in-depth transcriptomic and multiplex histopathological analyses. RESULTS: Genetic cell-autonomous activation of the IL6ST receptor in prostate epithelial cells triggers active STAT3 signaling and significantly reduces tumor growth in vivo. Mechanistically, genetic activation of IL6ST signaling mediates senescence via the STAT3/ARF/p53 axis and recruitment of cytotoxic T-cells, ultimately impeding tumor progression. In prostate cancer patients, high IL6ST mRNA expression levels correlate with better recurrence-free survival, increased senescence signals and a transition from an immune-cold to an immune-hot tumor. CONCLUSIONS: Our findings demonstrate a context-dependent role of IL6ST/STAT3 in carcinogenesis and a tumor-suppressive function in prostate cancer development by inducing senescence and immune cell attraction. We challenge the prevailing concept of blocking IL6ST/STAT3 signaling as a functional prostate cancer treatment and instead propose cell-autonomous IL6ST activation as a novel therapeutic strategy.
Assuntos
Senescência Celular , Neoplasias da Próstata , Fator de Transcrição STAT3 , Transdução de Sinais , Microambiente Tumoral , Proteína Supressora de Tumor p53 , Masculino , Fator de Transcrição STAT3/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Animais , Camundongos , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de DoençasRESUMO
Metastatic colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional chemotherapy extended the lifespan of cancer patients by only a few months, but targeted therapies and immunotherapy prolonged survival and led to long-term remissions in some cases. Type I and II interferons have direct pro-apoptotic and anti-proliferative effects on cancer cells and stimulate anti-cancer immunity. As a result, interferon production by cells in the tumor microenvironment is in the spotlight of immunotherapies as it affects the responses of anti-cancer immune cells. However, promoting effects of interferons on colorectal cancer metastasis have also been reported. Here we summarize our knowledge about pro- and anti-metastatic effects of type I and II interferons in colorectal cancer liver metastasis and discuss possible therapeutic implications.
Assuntos
Neoplasias Colorretais , Interferons , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/patologia , Imunoterapia , Neoplasias Hepáticas/secundário , Microambiente TumoralRESUMO
Colitis is a major risk factor for the development of colorectal cancer, leading to colitis-associated colorectal cancer (CAC). The most commonly used animal model to study CAC is the azoxymethane-dextran sulphate-sodium (AOM/DSS) model. The ideal experimental conditions of this model depend on several factors, including the used mouse strain. No data on feasibility and conditions for older mice, e.g., for aging studies, have yet been reported. Thus, we conducted a descriptive, observational pilot study where CAC was induced in 14-month-old female Balb/C and C57/Bl6 mice using 12.5 mg/kg AOM i.p. and three different concentrations of DSS (1, 2, and 3%) in drinking water (ad. lib.). The mice were monitored regularly during the three-month experimental phase. After euthanasia, the colons of the mice were evaluated macroscopically and microscopically. Both the mouse strains showed a DSS-concentration-dependent induction of CAC. Carcinomas were only observed at 3% DSS. The DSS dose was found to be significantly correlated with the histology score and % Ki67 positive cells only in C57/Bl6 mice but not in Balb/C mice, which showed a variable response to the CAC induction. No differences in colon length, weight, or mucin content were observed. Optimal conditions for CAC induction in these aged animals are thus considered to be 3% DSS, as carcinomas did not develop when 2% DSS was used. On the other hand, Balb/C mice reacted severely to 3% DSS, indicating that 2.5% DSS may be the "sweet spot" for future experiments comparing CAC in aged Balb/C and C57/Bl6 mice. This model will allow investigation of the effect of aging on CAC development and therapy.
Assuntos
Carcinoma , Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Animais , Azoximetano , Carcinogênese , Colite/induzido quimicamente , Colite/complicações , Colite/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Projetos PilotoRESUMO
WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.
Assuntos
Fibroblastos Associados a Câncer/metabolismo , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Neovascularização Patológica/induzido quimicamente , Proteína Wnt2/metabolismo , Proteína Wnt2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Microambiente Tumoral/fisiologiaRESUMO
Oncogenic K-RAS has been difficult to target and currently there is no K-RAS-based targeted therapy available for patients suffering from K-RAS-driven lung adenocarcinoma (AC). Alternatively, targeting K-RAS-downstream effectors, K-RAS-cooperating signaling pathways or cancer hallmarks, such as tumor-promoting inflammation, has been shown to be a promising therapeutic strategy. Since the JAK-STAT pathway is considered to be a central player in inflammation-mediated tumorigenesis, we investigated here the implication of JAK-STAT signaling and the therapeutic potential of JAK1/2 inhibition in K-RAS-driven lung AC. Our data showed that JAK1 and JAK2 are activated in human lung AC and that increased activation of JAK-STAT signaling correlated with disease progression and K-RAS activity in human lung AC. Accordingly, administration of the JAK1/2 selective tyrosine kinase inhibitor ruxolitinib reduced proliferation of tumor cells and effectively reduced tumor progression in immunodeficient and immunocompetent mouse models of K-RAS-driven lung AC. Notably, JAK1/2 inhibition led to the establishment of an antitumorigenic tumor microenvironment, characterized by decreased levels of tumor-promoting chemokines and cytokines and reduced numbers of infiltrating myeloid derived suppressor cells, thereby impairing tumor growth. Taken together, we identified JAK1/2 inhibition as promising therapy for K-RAS-driven lung AC.
Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacosRESUMO
The interleukin (IL)-1 family of cytokines is strongly associated with systemic sclerosis (SSc) and pulmonary involvement, but the molecular mechanisms are poorly understood. The aim of this study was to assess the role of IL-1α and IL-1ß in pulmonary vascular and interstitial remodelling in a mouse model of SSc.IL-1α and IL-1ß were localised in lungs of SSc patients and in the fos-related antigen-2 (Fra-2) transgenic (TG) mouse model of SSc. Lung function, haemodynamic parameters and pulmonary inflammation were measured in Fra-2 TG mice with or without 8â weeks of treatment with the IL-1 receptor antagonist anakinra (25â mg·kg-1·day-1). Direct effects of IL-1 on pulmonary arterial smooth muscle cells (PASMCs) and parenchymal fibroblasts were investigated in vitroFra-2 TG mice exhibited increased collagen deposition in the lung, restrictive lung function and enhanced muscularisation of the vasculature with concomitant pulmonary hypertension reminiscent of the changes in SSc patients. Immunoreactivity of IL-1α and IL-1ß was increased in Fra-2 TG mice and in patients with SSc. IL-1 stimulation reduced collagen expression in PASMCs and parenchymal fibroblasts via distinct signalling pathways. Blocking IL-1 signalling in Fra-2 TG worsened pulmonary fibrosis and restriction, enhanced T-helper cell type 2 (Th2) inflammation, and increased the number of pro-fibrotic, alternatively activated macrophages.Our data suggest that blocking IL-1 signalling as currently investigated in several clinical studies might aggravate pulmonary fibrosis in specific patient subsets due to Th2 skewing of immune responses and formation of alternatively activated pro-fibrogenic macrophages.
Assuntos
Inflamação/metabolismo , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Escleroderma Sistêmico/metabolismo , Células Th2/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Fibrose Pulmonar/patologia , Testes de Função Respiratória , Transdução de SinaisRESUMO
BACKGROUND & AIMS: Inhibitors of the epidermal growth factor receptor (EGFR) are the first-line therapy for patients with metastatic colorectal tumors without RAS mutations. However, EGFR inhibitors are ineffective in these patients, and tumor level of EGFR does not associate with response to therapy. We screened human colorectal tumors for EGFR-positive myeloid cells and investigated their association with patient outcome. We also performed studies in mice to evaluate how EGFR expression in tumor cells and myeloid cells contributes to development of colitis-associated cancer and ApcMin-dependent intestinal tumorigenesis. METHODS: We performed immunohistochemical and immunofluorescent analyses of 116 colorectal tumor biopsies to determine levels of EGFR in tumor and stroma; we also collected information on tumor stage and patient features and outcomes. We used the Mann-Whitney U and Kruskal-Wallis tests to correlate tumor levels of EGFR with tumor stage, and the Kaplan-Meier method to estimate patients' median survival time. We performed experiments in mice lacking EGFR in intestinal epithelial cells (Villin-Cre; Egfrf/f and Villin-CreERT2; Egfrf/f mice) or myeloid cells (LysM-Cre; Egfrf/f mice) on a mixed background. These mice were bred with ApcMin/+ mice; colitis-associated cancer and colitis were induced by administration of dextran sodium sulfate (DSS), with or without azoxymethane (AOM), respectively. Villin-CreERT2 was activated in developed tumors by administration of tamoxifen to mice. Littermates that expressed full-length EGFR were used as controls. Intestinal tissues were collected; severity of colitis, numbers and size of tumors, and intestinal barrier integrity were assessed by histologic, immunohistochemical, quantitative reverse transcription polymerase chain reaction, and flow cytometry analyses. RESULTS: We detected EGFR in myeloid cells in the stroma of human colorectal tumors; myeloid cell expression of EGFR associated with tumor metastasis and shorter patient survival time. Mice with deletion of EGFR from myeloid cells formed significantly fewer and smaller tumors than the respective EGFR-expressing controls in an ApcMin/+ background as well as after administration of AOM and DSS. Deletion of EGFR from intestinal epithelial cells did not affect tumor growth. Furthermore, tamoxifen-induced deletion of EGFR from epithelial cells of established intestinal tumors in mice given AOM and DSS did not reduce tumor size. EGFR signaling in myeloid cells promoted activation of STAT3 and expression of survivin in intestinal tumor cells. Mice with deletion of EGFR from myeloid cells developed more severe colitis after DSS administration, characterized by increased intestinal inflammation and intestinal barrier disruption, than control mice or mice with deletion of EGFR from intestinal epithelial cells. EGFR-deficient myeloid cells in the colon of DSS-treated LysM-Cre; Egfrf/f mice had reduced expression of interleukin 6 (IL6), and epithelial STAT3 activation was reduced compared with controls. Administration of recombinant IL6 to LysM-Cre; Egfrf/f mice given DSS protected them from weight loss and restored epithelial proliferation and STAT3 activation, compared with administration of DSS alone to these mice. CONCLUSIONS: Increased expression of EGFR in myeloid cells from the colorectal tumor stroma associates with tumor progression and reduced survival time of patients with metastatic colorectal cancer. Deletion of EGFR from myeloid cells, but not intestinal epithelial cells, protects mice from colitis-induced intestinal cancer and ApcMin-dependent intestinal tumorigenesis. Myeloid cell expression of EGFR increases activation of STAT3 and expression of survivin in intestinal epithelial cells and expression of IL6 in colon tissues. These findings indicate that expression of EGFR by myeloid cells of the colorectal tumor stroma, rather than the cancer cells themselves, contributes to tumor development.
Assuntos
Colite/complicações , Neoplasias Colorretais/química , Neoplasias Colorretais/patologia , Receptores ErbB/análise , Receptores ErbB/metabolismo , Mucosa Intestinal/metabolismo , Células Mieloides/química , Fator de Transcrição STAT3/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Azoximetano , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Sulfato de Dextrana , Células Epiteliais/metabolismo , Receptores ErbB/genética , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Mucosa Intestinal/patologia , Estimativa de Kaplan-Meier , Camundongos , Células Mieloides/metabolismo , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Proteínas Repressoras/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Survivina , Carga TumoralRESUMO
The inflamed tumor microenvironment plays a critical role in tumorigenesis. However, the mechanisms through which immune cells, particularly macrophages, promote tumorigenesis have only been partially elucidated, and the full scope of signaling pathways supplying macrophages with protumorigenic phenotypes still remain largely unknown. Here we report that germ-line absence of c-Jun N-terminal phosphorylation at serines 63 and 73 impedes inflammation-associated hepatocarcinogenesis, yet deleting c-Jun only in hepatocytes does not inhibit hepatocellular carcinoma (HCC) formation. Moreover, in human HCC-bearing livers, c-Jun phosphorylation is found in inflammatory cells, whereas it is mostly absent from malignant hepatocytes. Interestingly, macrophages in livers of mice with chronic hepatitis gradually switch their phenotype along the course of disease. Macrophage phenotype and density are dictated by c-Jun phosphorylation, in vitro and in vivo. Transition of macrophage phenotype, from antitumorigenic to protumorigenic, occurs before tumorigenesis, resulting in the production of various chemokines, including chemokine (C-C motif) ligand 17 (CCL17) and CCL22. Such signals, emanating from the liver microenvironment, direct the recruitment of regulatory T cells, which are known to facilitate HCC growth. Our findings identify c-Jun phosphorylation as a key mediator of macrophage education and point to the recruitment of immunosuppressive regulatory T cells as a possible protumorigenic mechanism.
Assuntos
Macrófagos/citologia , Macrófagos/imunologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Quimiocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Hepatite/metabolismo , Hepatócitos/citologia , Humanos , Imunidade Inata , Inflamação , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Fosforilação , Prognóstico , Estrutura Terciária de Proteína , Microambiente TumoralRESUMO
UNLABELLED: Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the GH receptor gene (Ghr(-/-), a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2(-/-)), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr(-/-);Mdr2(-/-) mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation, and increased collagen deposition relative to Mdr2(-/-) mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr(-/-);Mdr2(-/-) mice had a pronounced down-regulation of hepatoprotective genes Hnf6, Egfr, and Igf-1, and significantly increased levels of reactive oxygen species (ROS) and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr(-/-)) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis, and bile infarcts compared to their wild-type littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr(-/-);Mdr2(-/-) mice displayed a significant decrease in tumor incidence compared to Mdr2(-/-) mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. CONCLUSION: GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments.
Assuntos
Hormônio do Crescimento/metabolismo , Cirrose Hepática/etiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Ácidos e Sais Biliares/metabolismo , Colestase/complicações , Hepatócitos/fisiologia , Homeostase , Cirrose Hepática/metabolismo , Neoplasias Hepáticas Experimentais/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Receptores da Somatotropina/genética , Regulação para Cima , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATPRESUMO
We here establish a mouse cancer model called Multi-Hit that allows for the evaluation of oncogene cooperativities in tumor development. The model is based on the stochastic expression of oncogene combinations ('hits') that are mediated by Cre in a given tissue. Cells with cooperating hits are positively selected and give rise to tumors. We used this approach to evaluate the requirement of Ras downstream effector pathways in tumorigenesis.
Assuntos
Modelos Animais de Doenças , Neoplasias Pulmonares/metabolismo , Neoplasias Experimentais/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Transdução de Sinais , Animais , Feminino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteína Oncogênica p21(ras)/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genéticaRESUMO
Vascular remodelling is a hallmark of pulmonary hypertension (PH) and is characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs). Accumulating evidence indicates a crucial role of transcription factors in the vascular remodelling processes. Here, we characterize the involvement of meprin ß, a novel activator protein-1 (AP-1) effector molecule, in PH. Fra-2 transgenic (TG) mice exhibited increased right ventricular systolic pressure (RVSP), accompanied by vascular remodelling and activation of the pro-proliferative and pro-fibrotic AKT pathway. Microarray studies revealed the collagen-processing metalloprotease meprin ß as the most up-regulated gene in Fra-2 TG mice. Its expression, increased at all investigated time points, preceded the decreased expression of MMPs and increased TGFß, followed by collagen deposition. Correspondingly, remodelled pulmonary arteries from explanted idiopathic pulmonary arterial hypertension (IPAH) patients' lungs exhibited pronounced expression of meprin ß. Fra-2 and meprin ß expression in human PASMCs was regulated by PDGF-BB and TGFß in a complementary fashion. Importantly, PDGF-BB-dependent proliferation was attenuated by silencing AP-1 expression or by meprin ß inhibition. This study delineates a novel molecular mechanism underlying PASMCs proliferation and extracellular matrix (ECM) deposition by identifying meprin ß as an important mediator in regulating vascular remodelling processes. Thus, meprin ß may represent a new molecule that can be targeted in pulmonary hypertension.
Assuntos
Proliferação de Células , Hipertensão Pulmonar/metabolismo , Metaloendopeptidases/metabolismo , Artéria Pulmonar/metabolismo , Animais , Becaplermina , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Fibrose , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Metaloproteinases da Matriz/metabolismo , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-sis/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Função Ventricular Direita , Pressão VentricularRESUMO
Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding.
Assuntos
Plaquetas/metabolismo , Deficiências de Ferro , Ferro/sangue , Megacariócitos/metabolismo , Mielopoese/fisiologia , Trombopoetina/metabolismo , Animais , Plaquetas/citologia , Ferro/metabolismo , Masculino , Megacariócitos/citologia , Fenótipo , Agregação Plaquetária/fisiologia , Contagem de Plaquetas/métodos , Ratos , Ratos Sprague-DawleyRESUMO
Osteoclasts are multinucleated haematopoietic cells that resorb bone. Increased osteoclast activity causes osteoporosis, a disorder resulting in a low bone mass and a high risk of fractures. Increased osteoclast size and numbers are also a hallmark of other disorders, such as Paget's disease and multiple myeloma. The protein c-Fos, a component of the AP-1 transcription factor complex, is essential for osteoclast differentiation. Here we show that the Fos-related protein Fra-2 controls osteoclast survival and size. The bones of Fra-2-deficient newborn mice have giant osteoclasts, and signalling through leukaemia inhibitory factor (LIF) and its receptor is impaired. Similarly, newborn animals lacking LIF have giant osteoclasts, and we show that LIF is a direct transcriptional target of Fra-2 and c-Jun. Moreover, bones deficient in Fra-2 and LIF are hypoxic and express increased levels of hypoxia-induced factor 1alpha (HIF1alpha) and Bcl-2. Overexpression of Bcl-2 is sufficient to induce giant osteoclasts in vivo, whereas Fra-2 and LIF affect HIF1alpha through transcriptional modulation of the HIF prolyl hydroxylase PHD2. This pathway is operative in the placenta, because specific inactivation of Fra-2 in the embryo alone does not cause hypoxia or the giant osteoclast phenotype. Thus placenta-induced hypoxia during embryogenesis leads to the formation of giant osteoclasts in young pups. These findings offer potential targets for the treatment of syndromes associated with increased osteoclastogenesis.
Assuntos
Tamanho Celular , Antígeno 2 Relacionado a Fos/metabolismo , Hipóxia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/metabolismo , Osteoclastos/citologia , Transdução de Sinais , Animais , Animais Recém-Nascidos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Sobrevivência Celular , Proteínas de Ligação a DNA/metabolismo , Feminino , Antígeno 2 Relacionado a Fos/deficiência , Antígeno 2 Relacionado a Fos/genética , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia , Proteínas Imediatamente Precoces/metabolismo , Fator Inibidor de Leucemia/deficiência , Fator Inibidor de Leucemia/genética , Masculino , Camundongos , Osteoclastos/metabolismo , Osteoclastos/patologia , Pró-Colágeno-Prolina Dioxigenase , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2RESUMO
UNLABELLED: Activation of the activator protein 1 (AP-1) transcription factor as well as increased serum levels of vascular endothelial growth factor (VEGF) and interleukin (IL)-8 predict poor prognosis of patients with hepatocellular carcinomas (HCCs). Moreover, HCC patients display reduced selenium levels, which may cause lipid peroxidation and oxidative stress because selenium is an essential component of antioxidative glutathione peroxidases (GPx). We hypothesized that selenium-lipid peroxide antagonism controls the above prognostic markers and tumor growth. (1) In human HCC cell lines (HCC-1.2, HCC-3, and SNU398) linoleic acid peroxide (LOOH) and other prooxidants enhanced the expression of VEGF and IL-8. LOOH up-regulated AP-1 activation. Selenium inhibited these effects. This inhibition was mediated by glutathione peroxidase 4 (GPx4), which preferentially degrades lipid peroxides. Selenium enhanced GPx4 expression and total GPx activity, while knock-down of GPx4 by small interfering RNA (siRNA) increased VEGF, and IL-8 expression. (2) These results were confirmed in a rat hepatocarcinogenesis model. Selenium treatment during tumor promotion increased hepatic GPx4 expression and reduced the expression of VEGF and of the AP-1 component c-fos as well as nodule growth. (3) In HCC patients, increased levels of LOOH-related antibodies (LOOH-Ab) were found, suggesting enhanced LOOH formation. LOOH-Ab correlated with serum VEGF and IL-8 and with AP-1 activation in HCC tissue. In contrast, selenium inversely correlated with VEGF, IL-8, and HCC size (the latter only for tumors smaller than 3 cm). CONCLUSION: Reduced selenium levels result in accumulation of lipid peroxides. This leads to enhanced AP-1 activation and consequently to elevated expression of VEGF and IL-8, which accelerate the growth of HCC. Selenium supplementation could be considered for investigation as a strategy for chemoprevention or additional therapy of early HCC in patients with low selenium levels.
Assuntos
Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Ácido Linoleico/farmacologia , Peróxidos Lipídicos/farmacologia , Neoplasias Hepáticas/patologia , Selênio/farmacologia , Adulto , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Células Cultivadas , Dietilnitrosamina/efeitos adversos , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Interleucina-8/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos , Ratos Endogâmicos F344 , Fator de Transcrição AP-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
UNLABELLED: Signal transducer and activator of transcription 3 (Stat3) is activated in a variety of malignancies, including hepatocellular carcinoma (HCC). Activation of Ras occurs frequently at advanced stages of HCC by aberrant signaling through growth factor receptors or inactivation of effectors negatively regulating Ras signaling. Here, we addressed the role of Stat3 in Ras-dependent HCC progression in the presence and absence of p19(ARF) /p14(ARF) . We show that constitutive active (ca) Stat3 is tumor suppressive in Ras-transformed p19(ARF-/-) hepatocytes, whereas the expression of Stat3 lacking Tyr(705) phosphorylation (U-Stat3) enhances tumor formation. Accordingly, Ras-transformed Stat3(Δhc) /p19(ARF-/-) hepatocytes (lacking Stat3 and p19(ARF) ) showed increased tumor growth, compared to those expressing Stat3, demonstrating a tumor-suppressor activity of Stat3 in cells lacking p19(ARF) . Notably, endogenous expression of p19(ARF) in Ras-transformed hepatocytes conveyed oncogenic Stat3 functions, resulting in augmented or reduced HCC progression after the expression of caStat3 or U-Stat3, respectively. In accord with these data, the knockdown of p14(ARF) (the human homolog of p19(ARF) ) in Hep3B cells was associated with reduced pY-Stat3 levels during tumor growth to circumvent the tumor-suppressive effect of Stat3. Inhibition of Janus kinases (Jaks) revealed that Jak causes pY-Stat3 activation independently of p14(ARF) levels, indicating that p14(ARF) controls the oncogenic function of pY-Stat3 downstream of Jak. CONCLUSION: These data show evidence that p19(ARF) /p14(ARF) determines the pro- or anti-oncogenic activity of U-Stat3 and pY-Stat3 in Ras-dependent HCC progression.
Assuntos
Carcinoma Hepatocelular/fisiopatologia , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Neoplasias Hepáticas/fisiopatologia , Fator de Transcrição STAT3/fisiologia , Animais , Carcinoma Hepatocelular/patologia , Proliferação de Células , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Progressão da Doença , Hepatócitos/patologia , Janus Quinases/fisiologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologiaRESUMO
The Fos protein, a major component of the AP-1 transcription factor, is essential for osteoclast differentiation, acts as an oncogene, potentiates transforming signals, and controls invasive growth and angiogenesis during tumor progression. To investigate a potential genetic interaction between the Trp53 and Fos pathways, Trp53/Fos double knockout mice were generated. These mice develop highly proliferative and invasive rhabdomyosarcomas of the facial and orbital regions, with more than 90% penetrance at 6 months of age. Rhabdomyosarcoma cell lines established from the primary tumors express characteristic muscle-specific markers, and reexpression of Fos is associated with enhanced apoptosis in vitro. Moreover, Fos is able to repress Pax7 expression in rhabdomyosarcoma cell lines and primary myoblasts, suggesting a molecular link to genetic alterations involved in human rhabdomyosarcomas.
Assuntos
Músculo Esquelético/fisiopatologia , Mutação , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Rabdomiossarcoma/genética , Fator de Transcrição AP-1/genética , Animais , Apoptose/fisiologia , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fator de Transcrição PAX7 , Proteínas Proto-Oncogênicas c-fos/metabolismo , Rabdomiossarcoma/etiologia , Rabdomiossarcoma/metabolismo , Fator de Transcrição AP-1/metabolismo , Células Tumorais CultivadasRESUMO
The surface of intestinal epithelial cells is covered by the brush border, which consists of densely packed cellular extrusions called microvilli. Until recently, microvilli have not been known to be interconnected. In 2014, a protein complex, called the intermicrovillar adhesion complex (IMAC) which is located at the tips of the microvilli and responsible for the regular spatial organization of the brush border, was identified. Deletion of IMAC components such as cadherin-related family member-2 (CDHR2) in mice resulted in microvillus disorganization and fanning, a structural aberration that is also found in the brush border of patients with inflammatory bowel disease. The etiology of inflammatory bowel disease has been primarily associated with dysfunctional mucosal immunity, but the discovery of the IMAC may encourage theories of an epithelial origin. Here, possible effects of the brush border on the gut barrier function and intestinal inflammation are discussed proposing that the IMAC protects against inflammation through its microvillus cross-linking function.