Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 236(Pt 1): 116782, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517497

RESUMO

Sulfide-containing wastewater, characterized by its foul odor, corrosiveness, and toxicity, can endanger human health. Fluidized-bed homogeneous crystallization (FBHC) avoids the excessive sludge production commonly associated with conventional chemical precipitation methods. In this study, FBHC is used to treat sulfur-containing synthetic wastewater. Furthermore, nickel-containing wastewater was utilized as a precipitant in the system, hence the advantage of simultaneous sulfur and nickel removal from the wastewater. The operating parameters, including pH, a precipitant dosage of [Ni2+]0/[S2-]0, and cross-sectional surface loading (LS, kg/m2h) are optimized. The optimum operating conditions of pH 9.8 ± 0.3, [Ni2+]0/[S2-]0 = 0.8, and LS = 1.5 kg/m2h results in total sulfur removal (TR) of 95.7% and crystallization ratio (CR) of 94.8%. The effect of organic compounds (acetic acid, oxalic acid, EDTA, and citric acid) and inorganic ions (NO3-, CO32-, PO43-, F-, and Cl-) on the nickel sulfide granulation process was discussed.

2.
Chemosphere ; 357: 142008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614398

RESUMO

The mixture of copper and iron often results in materials with favorable properties. The material production processes involving these metals including electroplating produce hazardous wastewater. In this study, the Fluidized Bed Homogeneous Crystallization (FBHC) process was applied to treat iron and copper-containing wastewater. The initial iron copper particles were successfully recovered from synthetic wastewater with [Fe]0:[Cu]0 of 2:1, the total metal concentration of 3 mM, at effluent pH = 7.75 ± 0.75, with the upflow velocity (U) of 1.76 m/h. The agglomerates hardening process is a crucial step for initial particle synthesis. The SEM analysis reveals the spherical particle's densified crust and porous core. The particle formation mechanism which includes the formation of the nucleus, attachment of precipitate flakes, and densification of particles was proposed after microscopic observation. The initial particles synthesized were used to initiate the treatment of synthetic wastewater at the operating condition pH = 7.75 ± 0.5, [Fe]0:[Cu]0 of 2:1, the total metal concentration of 3 mM, [CO32-]0:[M]0 = 1.2:1, and U of 28.66 m/h which results in the total metal removal of 99% and crystallization ratio of 90% and 88% for iron and copper respectively. The conditions were then applied to treat electroplating wastewater and resulted in the total metal removal of 99% for both iron and copper and a crystallization ratio of 83% and 79% for iron and copper, respectively. The treatment provided advantages in terms of treating larger amounts of sludge while eliminating the need to provide seed thus yielding a higher purity of product.


Assuntos
Cobre , Cristalização , Ferro , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Cobre/química , Cobre/isolamento & purificação , Ferro/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA