Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 27(12): 3115-3118, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695368

RESUMO

We conducted a severe acute respiratory syndrome coronavirus 2 antibody seroprevalence study among >2,000 domestic cats from 4 countries during the first coronavirus disease wave in Europe. We found 4.4% seroprevalence using a virus neutralization test and 4.3% using a receptor-binding domain ELISA, demonstrating probable human-to-cat transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , Gatos , Europa (Continente)/epidemiologia , Humanos , Estudos Soroepidemiológicos
2.
Emerg Infect Dis ; 27(5): 1362-1370, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900184

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect many animal species, including minks, cats, and dogs. To gain insights into SARS-CoV-2 infections in cats and dogs, we developed and validated a set of serologic assays, including ELISA and virus neutralization. Evaluation of samples from animals before they acquired coronavirus disease and samples from cats roaming SARS-CoV-2-positive mink farms confirmed the suitability of these assays for specific antibody detection. Furthermore, our findings exclude SARS-CoV-2 nucleocapsid protein as an antigen for serologic screening of cat and dog samples. We analyzed 500 serum samples from domestic cats and dogs in the Netherlands during April-May 2020. We showed 0.4% of cats and 0.2% of dogs were seropositive. Although seroprevalence in cats and dogs that had unknown SARS-CoV-2 exposure was low during the first coronavirus disease wave, our data stress the need for development of continuous serosurveillance for SARS-CoV-2 in these 2 animal species.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Gatos , Cães , Humanos , Vison , Países Baixos/epidemiologia , Estudos Soroepidemiológicos
3.
J Clin Microbiol ; 58(11)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32878956

RESUMO

Influenza A viruses (IAVs) infect humans and a variety of other animal species. Infections with some subtypes of IAV were also reported in domestic cats and dogs. In addition to animal health implications, close contact between companion animals and humans also poses a potential risk of zoonotic IAV infections. In this study, serum samples from different cat and dog cohorts were analyzed for IAV antibodies against seven IAV subtypes, using three distinctive IAV-specific assays differing in IAV subtype-specific discriminatory power and sensitivity. Enzyme-linked immunosorbent assays against the complete hemagglutinin (HA) ectodomain or the HA1 domain were used, as well as a novel nanoparticle-based, virus-free hemagglutination inhibition assay. Using these three assays, we found cat and dog sera from different cohorts to be positive for antibodies against one or more IAV subtypes and/or strains. Cat and dog serum samples collected after the 2009 pandemic H1N1 outbreak exhibit much higher seropositivity against H1 compared to samples from before 2009. Cat sera, furthermore, displayed higher reactivity for avian IAVs than dog sera. Our findings show the added value of using complementary serological assays, which are based on reactivity with different numbers of HA epitopes, to study IAV antibody responses and for improved serosurveillance of IAV infections. We conclude that infection of cats and dogs with both human and avian IAVs of different subtypes is prevalent. These observations highlight the role of cats and dogs in IAV ecology and indicate the potential of these companion animals to give rise to novel (reassorted) viruses with increased zoonotic potential.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Gatos , Cães , Testes de Inibição da Hemaglutinação , Humanos , Influenza Humana/diagnóstico , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Zoonoses
4.
BMC Vet Res ; 13(1): 228, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768514

RESUMO

BACKGROUND: Feline coronavirus (FCoV) exists as two pathotypes, and FCoV spike gene mutations are considered responsible for the pathotypic switch in feline infectious peritonitis (FIP) pathogenesis. The aim of this study was to evaluate sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction (RT-PCR) specifically designed to detect FCoV spike gene mutations at two nucleotide positions. It was hypothesized that this test would correctly discriminate feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). METHODS: The study included 63 cats with signs consistent with FIP. FIP was confirmed in 38 cats. Twenty-five control cats were definitively diagnosed with a disease other than FIP. Effusion and/or serum/plasma samples were examined by real-time RT-PCR targeting the two FCoV spike gene fusion peptide mutations M1058 L and S1060A using an allelic discrimination approach. Sensitivity, specificity, negative and positive predictive values including 95% confidence intervals (95% CI) were calculated. RESULTS: FIPV was detected in the effusion of 25/59 cats, one of them being a control cat with chronic kidney disease. A mixed population of FIPV/FECV was detected in the effusion of 2/59 cats; all of them had FIP. RT-PCR was negative or the pathotype could not be determined in 34/59 effusion samples. In effusion, sensitivity was 68.6% (95% CI 50.7-83.2), specificity was 95.8% (95% CI 78.9-99.9). No serum/plasma samples were positive for FIPV. CONCLUSIONS: Although specificity of the test in effusions was high, one false positive result occurred. The use of serum/plasma cannot be recommended due to a low viral load in blood.


Assuntos
Doenças do Gato/diagnóstico , Coronavirus Felino/genética , Peritonite Infecciosa Felina/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Animais , Líquido Ascítico/virologia , Líquidos Corporais/virologia , Doenças do Gato/sangue , Doenças do Gato/virologia , Gatos , Peritonite Infecciosa Felina/sangue , Peritonite Infecciosa Felina/virologia , Mutação , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/genética
5.
J Clin Microbiol ; 51(1): 83-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23100349

RESUMO

Highly virulent pantropic canine coronavirus (CCoV) strains belonging to subtype IIa were recently identified in dogs. To assess the distribution of such strains in Europe, tissue samples were collected from 354 dogs that had died after displaying systemic disease in France (n = 92), Hungary (n = 75), Italy (n = 69), Greece (n = 87), The Netherlands (n = 27), Belgium (n = 4), and Bulgaria (n = 1). A total of 124 animals tested positive for CCoV, with 33 of them displaying the virus in extraintestinal tissues. Twenty-four CCoV strains (19.35% of the CCoV-positive dogs) detected in internal organs were characterized as subtype IIa and consequently assumed to be pantropic CCoVs. Sequence and phylogenetic analyses of the 5' end of the spike protein gene showed that pantropic CCoV strains are closely related to each other, with the exception of two divergent French viruses that clustered with enteric strains.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus Canino/isolamento & purificação , Doenças do Cão/epidemiologia , Doenças do Cão/virologia , Estruturas Animais/virologia , Animais , Análise por Conglomerados , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Cães , Europa (Continente)/epidemiologia , Variação Genética , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Prevalência , Análise de Sequência de DNA , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética
6.
Viruses ; 15(8)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37632050

RESUMO

Vaccine-associated adverse events (VAAEs), including feline injection-site sarcomas (FISSs), occur only rarely but can be severe. Understanding potential VAAEs is an important part of informed owner consent for vaccination. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of feline medicine experts, presents the current knowledge on VAAEs in cats, summarizing the literature and filling the gaps where scientific studies are missing with expert opinion to assist veterinarians in adopting the best vaccination practice. VAAEs are caused by an aberrant innate or adaptive immune reaction, excessive local reactions at the inoculation site, an error in administration, or failure in the manufacturing process. FISS, the most severe VAAE, can develop after vaccinations or injection of other substances. Although the most widely accepted hypothesis is that chronic inflammation triggers malignant transformation, the pathogenesis of FISS is not yet fully understood. No injectable vaccine is risk-free, and therefore, vaccination should be performed as often as necessary, but as infrequently as possible. Vaccines should be brought to room temperature prior to administration and injected at sites in which FISS surgery would likely be curative; the interscapular region should be avoided. Post-vaccinal monitoring is essential.


Assuntos
Doenças do Gato , Sarcoma , Gatos , Animais , Vacinação/efeitos adversos , Vacinação/veterinária , Sarcoma/etiologia , Sarcoma/veterinária , Doenças do Gato/etiologia , Comércio , Inflamação
7.
Microbiol Spectr ; 11(3): e0255322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37222603

RESUMO

The susceptibility of domestic cats to infection with SARS-CoV-2 has been demonstrated by several experimental studies and field observations. We performed an extensive study to further characterize the transmission of SARS-CoV-2 between cats, through both direct and indirect contact. To that end, we estimated the transmission rate parameter and the decay parameter for infectivity in the environment. Using four groups of pair-transmission experiment, all donor (inoculated) cats became infected, shed virus, and seroconverted, while three out of four direct contact cats got infected, shed virus, and two of those seroconverted. One out of eight cats exposed to a SARS-CoV-2-contaminated environment became infected but did not seroconvert. Statistical analysis of the transmission data gives a reproduction number R0 of 2.18 (95% CI = 0.92 to 4.08), a transmission rate parameter ß of 0.23 day-1 (95% CI = 0.06 to 0.54), and a virus decay rate parameter µ of 2.73 day-1 (95% CI = 0.77 to 15.82). These data indicate that transmission between cats is efficient and can be sustained (R0 > 1), however, the infectiousness of a contaminated environment decays rapidly (mean duration of infectiousness 1/2.73 days). Despite this, infections of cats via exposure to a SARS-CoV-2-contaminated environment cannot be discounted if cats are exposed shortly after contamination. IMPORTANCE This article provides additional insight into the risk of infection that could arise from cats infected with SARS-CoV-2 by using epidemiological models to determine transmission parameters. Considering that transmission parameters are not always provided in the literature describing transmission experiments in animals, we demonstrate that mathematical analysis of experimental data is crucial to estimate the likelihood of transmission. This article is also relevant to animal health professionals and authorities involved in risk assessments for zoonotic spill-overs of SARS-CoV-2. Last but not least, the mathematical models to calculate transmission parameters are applicable to analyze the experimental transmission of other pathogens between animals.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Gatos , COVID-19/veterinária , Modelos Teóricos , Medição de Risco
8.
Viruses ; 15(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896864

RESUMO

Feline morbillivirus (FeMV) was first isolated in 2012 from stray cats in Hong Kong. It has been found in association with tubulointerstitial nephritis (TIN), the most common cause of feline chronic kidney disease (CKD). However, viral host spectrum and virus tropism go beyond the domestic cat and kidney tissues. The viral genetic diversity of FeMV is extensive, but it is not known if this is clinically relevant. Urine and kidney tissues have been widely tested in attempts to confirm associations between FeMV infection and renal disease, but samples from both healthy and sick cats can test positive and some cross-sectional studies have not found associations between FeMV infection and CKD. There is also evidence for acute kidney injury following infection with FeMV. The results of prevalence studies differ greatly depending on the population tested and methodologies used for detection, but worldwide distribution of FeMV has been shown. Experimental studies have confirmed previous field observations that higher viral loads are present in the urine compared to other tissues, and renal TIN lesions associated with FeMV antigen have been demonstrated, alongside virus lymphotropism and viraemia-associated lymphopenia. Longitudinal field studies have revealed persistent viral shedding in urine, although infection can be cleared spontaneously.


Assuntos
Doenças do Gato , Infecções por Morbillivirus , Morbillivirus , Nefrite Intersticial , Insuficiência Renal Crônica , Gatos , Animais , Relevância Clínica , Estudos Transversais , Morbillivirus/genética , Infecções por Morbillivirus/epidemiologia , Infecções por Morbillivirus/veterinária , Insuficiência Renal Crônica/veterinária , Nefrite Intersticial/epidemiologia , Nefrite Intersticial/veterinária , Doenças do Gato/epidemiologia
9.
Viruses ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766254

RESUMO

Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.


Assuntos
Líquidos Corporais , Coronavirus Felino , Peritonite Infecciosa Felina , Gatos , Animais , Peritonite Infecciosa Felina/diagnóstico , Peritonite Infecciosa Felina/terapia , Antígenos Virais , Antivirais
10.
Viruses ; 15(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37243138

RESUMO

Several reports demonstrated the susceptibility of domestic cats to SARS-CoV-2 infection. Here, we describe a thorough investigation of the immune responses in cats after experimental SARS-CoV-2 inoculation, along with the characterization of infection kinetics and pathological lesions. Specific pathogen-free domestic cats (n = 12) were intranasally inoculated with SARS-CoV-2 and subsequently sacrificed on DPI (days post-inoculation) 2, 4, 7 and 14. None of the infected cats developed clinical signs. Only mild histopathologic lung changes associated with virus antigen expression were observed mainly on DPI 4 and 7. Viral RNA was present until DPI 7, predominantly in nasal and throat swabs. The infectious virus could be isolated from the nose, trachea and lungs until DPI 7. In the swab samples, no biologically relevant SARS-CoV-2 mutations were observed over time. From DPI 7 onwards, all cats developed a humoral immune response. The cellular immune responses were limited to DPI 7. Cats showed an increase in CD8+ cells, and the subsequent RNA sequence analysis of CD4+ and CD8+ subsets revealed a prominent upregulation of antiviral and inflammatory genes on DPI 2. In conclusion, infected domestic cats developed a strong antiviral response and cleared the virus within the first week after infection without overt clinical signs and relevant virus mutations.


Assuntos
COVID-19 , Animais , Gatos , COVID-19/patologia , SARS-CoV-2 , Pulmão , Imunidade Humoral
11.
Viruses ; 15(7)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37515217

RESUMO

Stray cats can host (zoonotic) viral pathogens and act as a source of infection for domestic cats or humans. In this cross-sectional (sero)prevalence study, sera from 580 stray cats living in 56 different cat groups in rural areas in The Netherlands were collected from October 2020 to July 2022. These were used to investigate the prevalence of the cat-specific feline leukemia virus (FeLV, n = 580), the seroprevalence of the cat-specific feline viruses feline immunodeficiency virus (FIV, n = 580) and feline coronavirus (FCoV, n = 407), and the zoonotic virus severe acute respiratory coronavirus-2 (SARS-CoV-2, n = 407) using enzyme-linked immunosorbent assays (ELISAs). ELISA-positive results were confirmed using Western blot (FIV) or pseudovirus neutralization test (SARS-CoV-2). The FIV seroprevalence was 5.0% (95% CI (Confidence Interval) 3.4-7.1) and ranged from 0-19.0% among groups. FIV-specific antibodies were more often detected in male cats, cats ≥ 3 years and cats with reported health problems. No FeLV-positive cats were found (95% CI 0.0-0.6). The FCoV seroprevalence was 33.7% (95% CI 29.1-38.5) and ranged from 4.7-85.7% among groups. FCoV-specific antibodies were more often detected in cats ≥ 3 years, cats with reported health problems and cats living in industrial areas or countryside residences compared to cats living at holiday parks or campsites. SARS-CoV-2 antibodies against the subunit 1 (S1) and receptor binding domain (RBD) protein were detected in 2.7% (95% CI 1.4-4.8) of stray cats, but sera were negative in the pseudovirus neutralization test and therefore were considered SARS-CoV-2 suspected. Our findings suggest that rural stray cats in The Netherlands can be a source of FIV and FCoV, indicating a potential risk for transmission to other cats, while the risk for FeLV is low. However, suspected SARS-CoV-2 infections in these cats were uncommon. We found no evidence of SARS-CoV-2 cat-to-cat spread in the studied stray cat groups and consider the likelihood of spillover to humans as low.


Assuntos
COVID-19 , Doenças do Gato , Vírus da Imunodeficiência Felina , Leucemia Felina , Humanos , Animais , Gatos , Masculino , Retroviridae , SARS-CoV-2 , Estudos Soroepidemiológicos , Países Baixos/epidemiologia , Estudos Transversais , COVID-19/epidemiologia , Vírus da Leucemia Felina , Anticorpos Antivirais , Doenças do Gato/epidemiologia
12.
Emerg Infect Dis ; 18(7): 1089-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22709821

RESUMO

Coronaviruses are well known for their potential to change their host or tissue tropism, resulting in unpredictable new diseases and changes in pathogenicity; severe acute respiratory syndrome and feline coronaviruses, respectively, are the most recognized examples. Feline coronaviruses occur as 2 pathotypes: nonvirulent feline enteric coronaviruses (FECVs), which replicate in intestinal epithelium cells, and lethal feline infectious peritonitis viruses (FIPVs), which replicate in macrophages. Evidence indicates that FIPV originates from FECV by mutation, but consistent distinguishing differences have not been established. We sequenced the full genome of 11 viruses of each pathotype and then focused on the single most distinctive site by additionally sequencing hundreds of viruses in that region. As a result, we identified 2 alternative amino acid differences in the putative fusion peptide of the spike protein that together distinguish FIPV from FECV in >95% of cases. By these and perhaps other mutations, the virus apparently acquires its macrophage tropism and spreads systemically.


Assuntos
Coronavirus Felino/patogenicidade , Glicoproteínas de Membrana/genética , Mutação , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Gatos , Infecções por Coronavirus/virologia , Coronavirus Felino/genética , Coronavirus Felino/metabolismo , Peritonite Infecciosa Felina/virologia , Genoma Viral , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/metabolismo , Virulência/genética
13.
Viruses ; 14(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893667

RESUMO

Vaccines protect cats from serious diseases by inducing antibodies and cellular immune responses. Primary vaccinations and boosters are given according to vaccination guidelines provided by industry and veterinary organizations, based on minimal duration of immunity (DOI). For certain diseases, particularly feline panleukopenia, antibody titres correlate with protection. For feline calicivirus and feline herpesvirus, a similar correlation is absent, or less clear. In this review, the European Advisory Board on Cat Diseases (ABCD) presents current knowledge and expert opinion on the use of antibody testing in different situations. Antibody testing can be performed either in diagnostic laboratories, or in veterinary practice using point of care (POC) tests, and can be applied for several purposes, such as to provide evidence that a successful immune response was induced following vaccination. In adult cats, antibody test results can inform the appropriate re-vaccination interval. In shelters, antibody testing can support the control of FPV outbreaks by identifying potentially unprotected cats. Antibody testing has also been proposed to support decisions on optimal vaccination schedules for the individual kitten. However, such testing is still expensive and it is considered impractical to monitor the decline of maternally derived antibodies.


Assuntos
Calicivirus Felino , Doenças do Gato , Panleucopenia Felina , Vacinas Virais , Animais , Anticorpos Antivirais , Gatos , Vírus da Panleucopenia Felina , Feminino , Vacinação/veterinária
14.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632665

RESUMO

Immunocompromise is a common condition in cats, especially due to widespread infections with immunosuppressive viruses, such as feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV), but also due to chronic non-infectious diseases, such as tumours, diabetes mellitus, and chronic kidney disease, as well as treatment with immunosuppressive drugs, such as glucocorticoids, cyclosporins, or tumour chemotherapy. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from eleven European countries, discusses the current knowledge and rationale for vaccination of immunocompromised cats. So far, there are few data available on vaccination of immunocompromised cats, and sometimes studies produce controversial results. Thus, this guideline summarizes the available scientific studies and fills in the gaps with expert opinion, where scientific studies are missing. Ultimately, this review aims to help veterinarians with their decision-making in how best to vaccinate immunocompromised cats.


Assuntos
Vírus da Imunodeficiência Felina , Vírus da Leucemia Felina , Animais , Gatos , Europa (Continente) , Vacinação/veterinária
15.
Viruses ; 14(5)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35632680

RESUMO

Feline calicivirus (FCV) is a common pathogen in domestic cats that is highly contagious, resistant to many disinfectants and demonstrates a high genetic variability. FCV infection can lead to serious or even fatal diseases. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from 11 European countries, presents the current knowledge of FCV infection and fills gaps with expert opinions. FCV infections are particularly problematic in multicat environments. FCV-infected cats often show painful erosions in the mouth and mild upper respiratory disease and, particularly in kittens, even fatal pneumonia. However, infection can be associated with chronic gingivostomatitis. Rarely, highly virulent FCV variants can induce severe systemic disease with epizootic spread and high mortality. FCV can best be detected by reverse-transcriptase PCR. However, a negative result does not rule out FCV infection and healthy cats can test positive. All cats should be vaccinated against FCV (core vaccine); however, vaccination protects cats from disease but not from infection. Considering the high variability of FCV, changing to different vaccine strain(s) may be of benefit if disease occurs in fully vaccinated cats. Infection-induced immunity is not life-long and does not protect against all strains; therefore, vaccination of cats that have recovered from caliciviral disease is recommended.


Assuntos
Infecções por Caliciviridae , Calicivirus Felino , Animais , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/veterinária , Gatos , Europa (Continente) , Feminino , Vacinação
16.
Transbound Emerg Dis ; 69(6): 4034-4040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36163676

RESUMO

Several domestic and wild animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Reported (sero)prevalence in dogs and cats vary largely depending on the target population, test characteristics, geographical location and time period. This research assessed the prevalence of SARS-CoV-2-positive cats and dogs (PCR- and/or antibody positive) in two different populations. Dogs and cats living in a household with at least one confirmed COVID-19-positive person (household (HH) study; 156 dogs and 152 cats) and dogs and cats visiting a veterinary clinic (VC) (VC study; 183 dogs and 140 cats) were sampled and tested for presence of virus (PCR) and antibodies. Potential risk factors were evaluated and follow-up of PCR-positive animals was performed to determine the duration of virus shedding and to detect potential transmission between pets in the same HH. In the HH study, 18.8% (27 dogs, 31 cats) tested SARS-CoV-2 positive (PCR- and/or antibody positive), whereas in the VC study, SARS-CoV-2 prevalence was much lower (4.6%; six dogs, nine cats). SARS-CoV-2 prevalence amongst dogs and cats was significantly higher in the multi-person HHs with two or more COVID-19-positive persons compared with multi-person HHs with only one COVID-19-positive person. In both study populations, no associations could be identified between SARS-CoV-2 status of the animal and health status, age or sex. During follow-up of PCR-positive animals, no transmission to other pets in the HH was observed despite long-lasting virus shedding in cats (up to 35 days). SARS-CoV-2 infection in dogs and cats appeared to be clearly associated with reported COVID-19-positive status of the HH. Our study supports previous findings and suggests a very low risk of pet-to-human transmission within HHs, no severe clinical signs in pets and a negligible pet-to-pet transmission between HHs.


Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Humanos , Animais , Gatos , Cães , COVID-19/epidemiologia , COVID-19/veterinária , SARS-CoV-2 , Doenças do Gato/epidemiologia , Doenças do Cão/epidemiologia , Animais Selvagens
17.
Transbound Emerg Dis ; 69(5): 3001-3007, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34080762

RESUMO

Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%-18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2.


Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Animais , Animais Selvagens , COVID-19/epidemiologia , COVID-19/veterinária , Doenças do Gato/epidemiologia , Gatos , Doenças do Cão/epidemiologia , Cães , Fazendas , Humanos , Vison , SARS-CoV-2
18.
Viruses ; 13(3)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806922

RESUMO

Since the coronavirus disease (COVID-19) pandemic was first identified in early 2020, rare cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in pet cats have been reported worldwide. Some reports of cats with SARS-CoV-2 showed self-limiting respiratory or gastrointestinal disease after suspected human-to-feline transmission via close contact with humans with SARS-CoV-2. In the present study, we investigated a cat with SARS-CoV-2 that was presented to a private animal clinic in Northern Italy in May 2020 in a weak clinical condition due to an underlying intestinal B-cell lymphoma. The cat developed signs of respiratory tract disease, including a sneeze, a cough and ocular discharge, three days after an oropharyngeal swab tested positive for SARS-CoV-2 viral RNA using two real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays for the envelope (E) and RNA-dependent RNA polymerase (RdRp) gene. Thus, SARS-CoV-2 viral RNA was detectable prior to the onset of clinical signs. Five and six months after positive molecular results, the serological testing substantiated the presence of a SARS-CoV-2 infection in the cat with the detection of anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin (IgG) antibodies and neutralizing activity in a surrogate virus neutralization assay (sVNT). To the best of our knowledge, this extends the known duration of seropositivity of SARS-CoV-2 in a cat. Our study provides further evidence that cats are susceptible to SARS-CoV-2 under natural conditions and strengthens the assumption that comorbidities may play a role in the development of clinical disease.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/veterinária , Doenças do Gato/imunologia , Linfoma de Células B/veterinária , Animais , Formação de Anticorpos , COVID-19/imunologia , COVID-19/virologia , Doenças do Gato/virologia , Gatos , Imunoglobulina G/imunologia , Itália , Linfoma de Células B/imunologia , Linfoma de Células B/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
19.
Viruses ; 13(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34452497

RESUMO

The COVID-19 pandemic raised concerns that companion animals might be infected with, and could become a reservoir of, SARS-CoV-2. As cats are popular pets and susceptible to Coronavirus, we investigated the seroprevalence of SARS-CoV-2 antibodies in shelter cats housed in Dutch animal shelters during the COVID-19 pandemic. In this large-scale cross-sectional study, serum samples of shelter cats were collected during the second wave of human COVID-19 infections in The Netherlands. Seroprevalence was determined by using an indirect protein-based ELISA validated for cats, and a Virus Neutralization Test (VNT) as confirmation. To screen for feline SARS-CoV-2 shedding, oropharyngeal and rectal swabs of cats positive for ELISA and/or VNT were analyzed using PCR tests. In 28 Dutch animal shelters, 240 shelter cats were convenience sampled. Two of these cats (0.8%; CI 95%: 0.1-3.0%) were seropositive, as evidenced by the presence of SARS-CoV-2 neutralizing antibodies. The seropositive animals tested PCR negative for SARS-CoV-2. Based on the results of this study, it is unlikely that shelter cats could be a reservoir of SARS-CoV-2 or pose a (significant) risk to public health.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/veterinária , Doenças do Gato/epidemiologia , SARS-CoV-2/imunologia , Animais , COVID-19/epidemiologia , COVID-19/imunologia , Teste de Ácido Nucleico para COVID-19/veterinária , Teste Sorológico para COVID-19/veterinária , Doenças do Gato/imunologia , Gatos , Estudos Transversais , Feminino , Abrigo para Animais , Humanos , Masculino , Países Baixos/epidemiologia , SARS-CoV-2/fisiologia , Estudos Soroepidemiológicos , Eliminação de Partículas Virais
20.
Viruses ; 13(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802899

RESUMO

Since the emergence of coronavirus disease (COVID-19) in late 2019, domestic cats have been demonstrated to be susceptible to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) under natural and experimental conditions. As pet cats often live in very close contact with their owners, it is essential to investigate SARS-CoV-2 infections in cats in a One-Health context. This study reports the first SARS-CoV-2 infection in a cat in a COVID-19-affected household in Switzerland. The cat (Cat 1) demonstrated signs of an upper respiratory tract infection, including sneezing, inappetence, and apathy, while the cohabiting cat (Cat 2) remained asymptomatic. Nasal, oral, fecal, fur, and environmental swab samples were collected twice from both cats and analyzed by RT-qPCR for the presence of SARS-CoV-2 viral RNA. Both nasal swabs from Cat 1 tested positive. In addition, the first oral swab from Cat 2 and fur and bedding swabs from both cats were RT-qPCR positive. The fecal swabs tested negative. The infection of Cat 1 was confirmed by positive SARS-CoV-2 S1 receptor binding domain (RBD) antibody testing and neutralizing activity in a surrogate assay. The viral genome sequence from Cat 1, obtained by next generation sequencing, showed the closest relation to a human sequence from the B.1.1.39 lineage, with one single nucleotide polymorphism (SNP) difference. This study demonstrates not only SARS-CoV-2 infection of a cat from a COVID-19-affected household but also contamination of the cats' fur and bed with viral RNA. Our results are important to create awareness that SARS-CoV-2 infected people should observe hygienic measures to avoid infection and contamination of animal cohabitants.


Assuntos
COVID-19/veterinária , Doenças do Gato/virologia , Genoma Viral , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/diagnóstico , COVID-19/virologia , Doenças do Gato/diagnóstico , Gatos , Fezes/virologia , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único , RNA Viral/genética , SARS-CoV-2/classificação , SARS-CoV-2/genética , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA