Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Biol ; 21(5): e3002124, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205711

RESUMO

Necrotizing enterocolitis (NEC) is a gastrointestinal complication of premature infants with high rates of morbidity and mortality. A comprehensive view of the cellular changes and aberrant interactions that underlie NEC is lacking. This study aimed at filling in this gap. We combine single-cell RNA sequencing (scRNAseq), T-cell receptor beta (TCRß) analysis, bulk transcriptomics, and imaging to characterize cell identities, interactions, and zonal changes in NEC. We find an abundance of proinflammatory macrophages, fibroblasts, endothelial cells as well as T cells that exhibit increased TCRß clonal expansion. Villus tip epithelial cells are reduced in NEC and the remaining epithelial cells up-regulate proinflammatory genes. We establish a detailed map of aberrant epithelial-mesenchymal-immune interactions that are associated with inflammation in NEC mucosa. Our analyses highlight the cellular dysregulations of NEC-associated intestinal tissue and identify potential targets for biomarker discovery and therapeutics.


Assuntos
Enterocolite Necrosante , Lactente , Recém-Nascido , Humanos , Enterocolite Necrosante/genética , Células Endoteliais , Intestino Delgado , Recém-Nascido Prematuro , Intestinos , Mucosa Intestinal
2.
PLoS Biol ; 19(10): e3001214, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634036

RESUMO

The intestine is lined with isolated lymphoid follicles (ILFs) that facilitate sampling of luminal antigens to elicit immune responses. Technical challenges related to the scarcity and small sizes of ILFs and their follicle-associated epithelium (FAE) impeded the characterization of their spatial gene expression programs. Here, we combined RNA sequencing of laser capture microdissected tissues with single-molecule transcript imaging to obtain a spatial gene expression map of the ILF and its associated FAE in the mouse small intestine. We identified zonated expression programs in both follicles and FAEs, with a decrease in enterocyte antimicrobial and absorption programs and a partial induction of expression programs normally observed at the villus tip. We further identified Lepr+ subepithelial telocytes at the FAE top, which are distinct from villus tip Lgr5+ telocytes. Our analysis exposes the epithelial and mesenchymal cell states associated with ILFs.


Assuntos
Epitélio/metabolismo , Regulação da Expressão Gênica , Intestinos/metabolismo , Tecido Linfoide/metabolismo , Animais , Regulação para Baixo/genética , Enterócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Telócitos/metabolismo
3.
Gut ; 71(10)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046090

RESUMO

BACKGROUND: Colonoscopy is the gold standard for evaluation of inflammation in inflammatory bowel diseases (IBDs), yet entails cumbersome preparations and risks of injury. Existing non-invasive prognostic tools are limited in their diagnostic power. Moreover, transcriptomics of colonic biopsies have been inconclusive in their association with clinical features. AIMS: To assess the utility of host transcriptomics of faecal wash samples of patients with IBD compared with controls. METHODS: In this prospective cohort study, we obtained biopsies and faecal-wash samples from patients with IBD and controls undergoing lower endoscopy. We performed RNAseq of biopsies and matching faecal-washes, and associated them with endoscopic and histological inflammation status. We also performed faecal mass-spectrometry proteomics on a subset of samples. We inferred cell compositions using computational deconvolution and used classification algorithms to identify informative genes. RESULTS: We analysed biopsies and faecal washes from 39 patients (20 IBD, 19 controls). Host faecal-transcriptome carried information that was distinct from biopsy RNAseq and faecal proteomics. Transcriptomics of faecal washes, yet not of biopsies, from patients with histological inflammation were significantly correlated to one another (p=5.3×10-12). Faecal-transcriptome had significantly higher statistical power in identifying histological inflammation compared with transctiptome of intestinal biopsies (150 genes with area under the curve >0.9 in faecal samples vs 10 genes in biopsy RNAseq). These results were replicated in a validation cohort of 22 patients (10 IBD, 12 controls). Faecal samples were enriched in inflammatory monocytes, regulatory T cells, natural killer-cells and innate lymphoid cells. CONCLUSIONS: Faecal wash host transcriptome is a statistically powerful biomarker reflecting histological inflammation. Furthermore, it opens the way to identifying important correlates and therapeutic targets that may be obscured using biopsy transcriptomics.

4.
Diabetes Obes Metab ; 20 Suppl 2: 145-156, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30230176

RESUMO

Gene expression in metabolic tissues can be regulated at multiple levels, ranging from the control of promoter accessibilities, transcription rates, mRNA degradation rates and mRNA localization. Modulating these processes can differentially affect important performance criteria of cells. These include precision, cellular economy, rapid response and maintenance of DNA integrity. In this review we will describe how distinct strategies of gene regulation impact the trade-offs between the cells' performance criteria. We will highlight tools based on single molecule visualization of transcripts that can be used to measure promoter states, transcription rates and mRNA degradation rates in intact tissues. These approaches revealed surprising recurrent patterns in mammalian tissues, that include transcriptional bursting, nuclear retention of mRNA, and coordination of mRNA lifetimes to facilitate rapid adaptation to changing metabolic inputs. The ability to characterize gene expression at the single molecule level can uncover the design principles of gene regulation in metabolic tissues such as the liver and the pancreas.


Assuntos
Ilhotas Pancreáticas/metabolismo , Imagem Individual de Molécula/métodos , Transcrição Gênica/fisiologia , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Fígado/metabolismo , Mamíferos , MicroRNAs/fisiologia , Estabilidade de RNA/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia
5.
Sci Immunol ; 9(93): eadj7124, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552029

RESUMO

Antibody affinity maturation occurs in secondary lymphoid organs within germinal centers (GCs). At these sites, B cells mutate their antibody-encoding genes in the dark zone, followed by preferential selection of the high-affinity variants in the light zone by T cells. The strength of the T cell-derived selection signals is proportional to the B cell receptor affinity and to the magnitude of subsequent Myc expression. However, because the lifetime of Myc mRNA and its corresponding protein is very short, it remains unclear how T cells induce sustained Myc levels in positively selected B cells. Here, by direct visualization of mRNA and active transcription sites in situ, we found that an increase in transcriptional bursts promotes Myc expression during B cell positive selection in GCs. Elevated T cell help signals predominantly enhance the percentage of cells expressing Myc in GCs as opposed to augmenting the quantity of Myc transcripts per individual cell. Visualization of transcription start sites in situ revealed that T cell help promotes an increase in the frequency of transcriptional bursts at the Myc locus in GC B cells located primarily in the LZ apical rim. Thus, the rise in Myc, which governs positive selection of B cells in GCs, reflects an integration of transcriptional activity over time rather than an accumulation of transcripts at a specific time point.


Assuntos
Linfócitos B , Linfócitos T , Centro Germinativo , Receptores de Antígenos de Linfócitos B/metabolismo , RNA Mensageiro/metabolismo
6.
Nat Metab ; 5(11): 1858-1869, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857731

RESUMO

The intestinal epithelium is replaced every few days1. Enterocytes are shed into the gut lumen predominantly from the tips of villi2,3 and have been believed to rapidly die upon their dissociation from the tissue4,5. However, technical limitations prohibited studying the cellular states and fates of shed intestinal cells. Here we show that shed epithelial cells remain viable and upregulate distinct anti-microbial programmes upon shedding, using bulk and single-cell RNA sequencing of male mouse intestinal faecal washes. We further identify abundant shedding of immune cells, which is elevated in mice with dextran sulfate sodium-induced colitis. We find that faecal host transcriptomics reflect changes in the intestinal tissue following perturbations. Our study suggests potential functions of shed cells in the intestinal lumen and demonstrates that host cell transcriptomes in intestinal washes can be used to probe tissue states.


Assuntos
Colite , Masculino , Camundongos , Animais , Colite/induzido quimicamente , Mucosa Intestinal , Células Epiteliais
7.
Mol Metab ; 60: 101467, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35240340

RESUMO

OBJECTIVES: Until recently, communication between neighboring cells in islets of Langerhans was overlooked by genomic technologies, which require rigorous tissue dissociation into single cells. METHODS: We utilize sorting of physically interacting cells (PICs) with single-cell RNA-sequencing to systematically map cellular interactions in the endocrine pancreas after pancreatectomy. RESULTS: The pancreas cellular landscape features pancreatectomy associated heterogeneity of beta-cells, including an interaction-specific program between paired beta and delta-cells. CONCLUSIONS: Our analysis suggests that the particular cluster of beta-cells that pairs with delta-cells benefits from stress protection, implying that the interaction between beta- and delta-cells might safeguard against pancreatectomy associated challenges. The work encourages testing the potential relevance of physically-interacting beta-delta-cells also in diabetes mellitus.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Pâncreas , Pancreatectomia , Regeneração
8.
Nat Med ; 27(12): 2104-2107, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887578

RESUMO

Generation of beta cells via transdifferentiation of other cell types is a promising avenue for the treatment of diabetes. Here we reconstruct a single-cell atlas of the human fetal and neonatal small intestine. We identify a subset of fetal enteroendocrine K/L cells that express high levels of insulin and other beta cell genes. Our findings highlight a potential extra-pancreatic source of beta cells and expose its molecular blueprint.


Assuntos
Células Enteroendócrinas/metabolismo , Desenvolvimento Fetal , Insulina/metabolismo , Humanos
9.
Cell Rep ; 32(7): 108043, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814046

RESUMO

The islets of Langerhans are dynamic structures that can change in size, number of cells, and molecular function in response to physiological and pathological stress. Molecular cues originating from the surrounding "peri-islet" acinar cells that could facilitate this plasticity have not been explored. Here, we combine single-molecule transcript imaging in the intact pancreas and transcriptomics to identify spatial heterogeneity of acinar cell gene expression. We find that peri-islet acinar cells exhibit a distinct molecular signature in db/db diabetic mice that includes upregulation of trypsin family genes and elevated mTOR activity. This zonated expression program seems to be induced by CCK that is secreted from islet cells. Elevated peri-islet trypsin secretion could facilitate the islet expansion observed in this model via modulation of the islet capsule matrix components. Our study highlights a molecular axis of communication between the pancreatic exocrine and endocrine compartments that may be relevant to islet expansion.


Assuntos
Células Acinares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Pâncreas/metabolismo , Animais , Camundongos
10.
Nat Commun ; 11(1): 1936, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321913

RESUMO

The intestinal epithelium is a structured organ composed of crypts harboring Lgr5+ stem cells, and villi harboring differentiated cells. Spatial transcriptomics have demonstrated profound zonation of epithelial gene expression along the villus axis, but the mechanisms shaping this spatial variability are unknown. Here, we combine laser capture micro-dissection and single cell RNA sequencing to uncover spatially zonated populations of mesenchymal cells along the crypt-villus axis. These include villus tip telocytes (VTTs) that express Lgr5, a gene previously considered a specific crypt epithelial stem cell marker. VTTs are elongated cells that line the villus tip epithelium and signal through Bmp morphogens and the non-canonical Wnt5a ligand. Their ablation is associated with perturbed zonation of enterocyte genes induced at the villus tip. Our study provides a spatially-resolved cell atlas of the small intestinal stroma and exposes Lgr5+ villus tip telocytes as regulators of the epithelial spatial expression programs along the villus axis.


Assuntos
Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Enterócitos/citologia , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Células Estromais/metabolismo , Proteína Wnt-5a/metabolismo
11.
Dev Cell ; 48(1): 115-125.e4, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30503750

RESUMO

Pancreatic beta cells have been shown to be heterogeneous at multiple levels. However, spatially interrogating transcriptional heterogeneity in the intact tissue has been challenging. Here, we developed an optimized protocol for single-molecule transcript imaging in the intact pancreas and used it to identify a sub-population of "extreme" beta cells with elevated mRNA levels of insulin and other secretory genes. Extreme beta cells contain higher ribosomal and proinsulin content but lower levels of insulin protein in fasted states, suggesting they may be tuned for basal insulin secretion. They exhibit a distinctive intra-cellular polarization pattern, with elevated mRNA concentrations in an apical ER-enriched compartment, distinct from the localization of nascent and mature proteins. The proportion of extreme cells increases in db/db diabetic mice, potentially facilitating the required increase in basal insulin. Our results thus highlight a sub-population of beta cells that may carry distinct functional roles along physiological and pathological timescales.


Assuntos
Heterogeneidade Genética , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/fisiologia , Camundongos Transgênicos , Proinsulina/metabolismo
12.
Nat Biotechnol ; 36(10): 962-970, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30222169

RESUMO

Spatially resolved single-cell RNA sequencing (scRNAseq) is a powerful approach for inferring connections between a cell's identity and its position in a tissue. We recently combined scRNAseq with spatially mapped landmark genes to infer the expression zonation of hepatocytes. However, determining zonation of small cells with low mRNA content, or without highly expressed landmark genes, remains challenging. Here we used paired-cell sequencing, in which mRNA from pairs of attached mouse cells were sequenced and gene expression from one cell type was used to infer the pairs' tissue coordinates. We applied this method to pairs of hepatocytes and liver endothelial cells (LECs). Using the spatial information from hepatocytes, we reconstructed LEC zonation and extracted a landmark gene panel that we used to spatially map LEC scRNAseq data. Our approach revealed the expression of both Wnt ligands and the Dkk3 Wnt antagonist in distinct pericentral LEC sub-populations. This approach can be used to reconstruct spatial expression maps of non-parenchymal cells in other tissues.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica/fisiologia , Fígado/citologia , Animais , Sequência de Bases , Hepatócitos/fisiologia , Camundongos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA