RESUMO
Evidence suggests that trait anxiety relates to cognitive processing and behavior. However, the relationships between trait anxiety and sensory processing, goal-directed performance and sensorimotor function are unclear, particularly in a multimodal context. This study used electroencephalography to evaluate whether trait anxiety influenced visual and tactile event-related potentials (ERPs), as well as behavioral distractor cost, in a bimodal sensorimotor task. Twenty-nine healthy young adults completed the State-Trait Anxiety Inventory. Participants were directed to focus on either tactile or visual stimuli while disregarding the other modality, responding to target stimulus amplitude with a proportional grip. Previous research suggests that somatosensory N70 and visual P2 ERPs serve as markers of attentional relevance, with attention also impacting the visual P3 ERP. It was hypothesized that trait anxiety would modulate the ERPs susceptible to attentional modulation (tactile N70, visual P2 and P3) and not affect behavioral performance. Trait anxiety showed a large, significant interaction with attention for visual P3 latency in response to unimodal visual stimuli, with a positive relationship between P3 latencies and trait anxiety when attending toward the stimulus and negative when attending away. A large, positive main effect of trait anxiety on visual N1 amplitude for bimodal stimuli was also detected. As predicted, trait anxiety related to ERPs but not behavioral distractor cost. These findings suggest that trait anxiety modulates visual but not somatosensory processing correlates based on attention. The absence of overt behavioral performance effects suggests compensatory mechanisms may offset underlying differences in sensory processing.
RESUMO
Isolated rapid eye movement sleep behaviour disorder (iRBD) is a sleep disorder characterized by the loss of rapid eye movement sleep muscle atonia and the appearance of abnormal movements and vocalizations during rapid eye movement sleep. It is a strong marker of incipient synucleinopathy such as dementia with Lewy bodies and Parkinson's disease. Patients with iRBD already show brain changes that are reminiscent of manifest synucleinopathies including brain atrophy. However, the mechanisms underlying the development of this atrophy remain poorly understood. In this study, we performed cutting-edge imaging transcriptomics and comprehensive spatial mapping analyses in a multicentric cohort of 171 polysomnography-confirmed iRBD patients [67.7 ± 6.6 (49-87) years; 83% men] and 238 healthy controls [66.6 ± 7.9 (41-88) years; 77% men] with T1-weighted MRI to investigate the gene expression and connectivity patterns associated with changes in cortical thickness and surface area in iRBD. Partial least squares regression was performed to identify the gene expression patterns underlying cortical changes in iRBD. Gene set enrichment analysis and virtual histology were then done to assess the biological processes, cellular components, human disease gene terms, and cell types enriched in these gene expression patterns. We then used structural and functional neighbourhood analyses to assess whether the atrophy patterns in iRBD were constrained by the brain's structural and functional connectome. Moreover, we used comprehensive spatial mapping analyses to assess the specific neurotransmitter systems, functional networks, cytoarchitectonic classes, and cognitive brain systems associated with cortical changes in iRBD. All comparisons were tested against null models that preserved spatial autocorrelation between brain regions and compared to Alzheimer's disease to assess the specificity of findings to synucleinopathies. We found that genes involved in mitochondrial function and macroautophagy were the strongest contributors to the cortical thinning occurring in iRBD. Moreover, we demonstrated that cortical thinning was constrained by the brain's structural and functional connectome and that it mapped onto specific networks involved in motor and planning functions. In contrast with cortical thickness, changes in cortical surface area were related to distinct genes, namely genes involved in the inflammatory response, and to different spatial mapping patterns. The gene expression and connectivity patterns associated with iRBD were all distinct from those observed in Alzheimer's disease. In summary, this study demonstrates that the development of brain atrophy in synucleinopathies is constrained by specific genes and networks.
Assuntos
Doença de Alzheimer , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Masculino , Humanos , Feminino , Sinucleinopatias/diagnóstico por imagem , Sinucleinopatias/genética , Doença de Alzheimer/patologia , Afinamento Cortical Cerebral/patologia , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/genética , Transtorno do Comportamento do Sono REM/complicações , Mitocôndrias/metabolismo , Atrofia/patologiaRESUMO
Isolated REM sleep behaviour disorder (iRBD) is a synucleinopathy characterized by abnormal behaviours and vocalizations during REM sleep. Most iRBD patients develop dementia with Lewy bodies, Parkinson's disease or multiple system atrophy over time. Patients with iRBD exhibit brain atrophy patterns that are reminiscent of those observed in overt synucleinopathies. However, the mechanisms linking brain atrophy to the underlying alpha-synuclein pathophysiology are poorly understood. Our objective was to investigate how the prion-like and regional vulnerability hypotheses of alpha-synuclein might explain brain atrophy in iRBD. Using a multicentric cohort of 182 polysomnography-confirmed iRBD patients who underwent T1-weighted MRI, we performed vertex-based cortical surface and deformation-based morphometry analyses to quantify brain atrophy in patients (67.8 years, 84% male) and 261 healthy controls (66.2 years, 75%) and investigated the morphological correlates of motor and cognitive functioning in iRBD. Next, we applied the agent-based Susceptible-Infected-Removed model (i.e. a computational model that simulates in silico the spread of pathologic alpha-synuclein based on structural connectivity and gene expression) and tested if it recreated atrophy in iRBD by statistically comparing simulated regional brain atrophy to the atrophy observed in patients. The impact of SNCA and GBA gene expression and brain connectivity was then evaluated by comparing the model fit to the one obtained in null models where either gene expression or connectivity was randomized. The results showed that iRBD patients present with cortical thinning and tissue deformation, which correlated with motor and cognitive functioning. Next, we found that the computational model recreated cortical thinning (r = 0.51, P = 0.0007) and tissue deformation (r = 0.52, P = 0.0005) in patients, and that the connectome's architecture along with SNCA and GBA gene expression contributed to shaping atrophy in iRBD. We further demonstrated that the full agent-based model performed better than network measures or gene expression alone in recreating the atrophy pattern in iRBD. In summary, atrophy in iRBD is extensive, correlates with motor and cognitive function and can be recreated using the dynamics of agent-based modelling, structural connectivity and gene expression. These findings support the concepts that both prion-like spread and regional susceptibility account for the atrophy observed in prodromal synucleinopathies. Therefore, the agent-based Susceptible-Infected-Removed model may be a useful tool for testing hypotheses underlying neurodegenerative diseases and new therapies aimed at slowing or stopping the spread of alpha-synuclein pathology.
Assuntos
Doenças Neurodegenerativas , Príons , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Idoso , Atrofia/patologia , Encéfalo/patologia , Afinamento Cortical Cerebral , Feminino , Expressão Gênica , Humanos , Masculino , Doenças Neurodegenerativas/patologia , Príons/metabolismo , Transtorno do Comportamento do Sono REM/metabolismo , Sinucleinopatias/diagnóstico por imagem , Sinucleinopatias/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
OBJECTIVE: Isolated (or idiopathic) rapid eye movement sleep behavior disorder (iRBD) is associated with dementia with Lewy bodies (DLB) and Parkinson's disease (PD). Biomarkers are lacking to predict conversion to a dementia or a motor-first phenotype. Here, we aimed at identifying a brain-clinical signature that predicts dementia in iRBD. METHODS: A brain-clinical signature was identified in 48 patients with polysomnography-confirmed iRBD using partial least squares between brain deformation and 27 clinical variables. The resulting variable was applied to 78 patients with iRBD followed longitudinally to predict conversion to a synucleinopathy, specifically DLB. The deformation scores from patients with iRBD were compared with 207 patients with PD, DLB, or prodromal DLB to assess if scores were higher in DLB compared to PD. RESULTS: One latent variable explained 31% of the brain-clinical covariance in iRBD, combining cortical and subcortical deformation and subarachnoid/ventricular expansion to cognitive and motor variables. The deformation score of this signature predicted conversion to a synucleinopathy in iRBD (p = 0.036, odds ratio [OR] = 2.249; 95% confidence interval [CI] = 1.053-4.803), specifically to DLB (OR = 4.754; 95% CI = 1.283-17.618, p = 0.020) and not PD (p = 0.286). Patients with iRBD who developed dementia had scores similar to clinical and prodromal patients with DLB but higher scores compared with patients with PD. The deformation score also predicted cognitive performance over 1, 2, and 4 years in patients with PD. INTERPRETATION: We identified a brain-clinical signature that predicts conversion in iRBD to more severe/dementing forms of synucleinopathy. This pattern may serve as a new biomarker to optimize patient care, target risk reduction strategies, and administer neuroprotective trials. ANN NEUROL 2021;89:341-357.
Assuntos
Cognição , Doença por Corpos de Lewy/fisiopatologia , Doença de Parkinson/fisiopatologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Idoso , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Humanos , Análise dos Mínimos Quadrados , Doença por Corpos de Lewy/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Polissonografia , Sintomas Prodrômicos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Sinucleinopatias/diagnóstico por imagem , Sinucleinopatias/fisiopatologiaRESUMO
BACKGROUND: Freezing of gait is a complex paroxysmal phenomenon that is associated with a variety of sensorimotor, cognitive and affective deficits, and significantly impacts quality of life in patients with Parkinson's disease (PD). Despite a growing body of evidence that suggests anxiety may be a crucial contributor to freezing of gait, no research study to date has investigated neural underpinnings of anxiety-induced freezing of gait. OBJECTIVE: Here, we aimed to investigate how anxiety-inducing contexts might "set the stage for freezing," through the ascending arousal system, by examining an anxiety-inducing virtual reality gait paradigm inside functional magnetic resonance imaging (fMRI). METHODS: We used a virtual reality gait paradigm that has been validated to elicit anxiety by having participants navigate a virtual plank, while simultaneously collecting task-based fMRI from individuals with idiopathic PD with confirmed freezing of gait. RESULTS: First, we established that the threatening condition provoked more freezing when compared to the non-threatening condition. By using a dynamic connectivity analysis, we identified patterns of increased "cross-talk" within and between motor, limbic, and cognitive networks in the threatening conditions. We established that the threatening condition was associated with heightened network integration. We confirmed the sympathetic nature of this phenomenon by demonstrating an increase in pupil dilation during the anxiety-inducing condition of the virtual reality gait paradigm in a secondary experiment. CONCLUSIONS: In conclusion, our findings represent a neurobiological mechanistic pathway through which heightened sympathetic arousal related to anxiety could foster increased "cross-talk" between distributed cortical networks that ultimately manifest as paroxysmal episodes of freezing of gait. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Ansiedade/etiologia , Marcha , Humanos , Qualidade de VidaRESUMO
Depression and anxiety are commonly associated with synucleinopathies. Mood disturbances have also been reported in patients with idiopathic REM sleep behaviour disorder (iRBD) and are difficult to treat due to exacerbation of sleep symptoms with standard antidepressants. Despite this, detailed prevalence studies of mood symptomatology and contributors to mood disturbances in iRBD are limited. Mood, sleep, autonomic, cognitive and motor symptoms were assessed in 49 well-characterized patients with iRBD using a variety of clinical scales. Spearman correlations, factor analysis and multiple linear regression were used to uncover associations between mood and non-motor and motor symptoms. The prevalence of significant depression was 17.0% and that of anxiety was 14.6% in the iRBD cohort. Age and disease duration were not correlated with these affective symptoms in iRBD patients. We found depression was significantly predicted by the presence and severity of motor, sleep and cognitive symptoms. Anxiety was predicted by the severity of nocturnal and daytime sleep-related symptoms, cognitive symptoms and autonomic symptoms, with a differential effect depending on the questionnaire used. Depression and anxiety are common in iRBD patients and can be significantly explained by specific sets of non-motor and motor symptoms. These associations provide insight into the underlying pathophysiology and emphasize the importance of a holistic approach to mood disturbance in this population, which may circumvent the reliance on pharmacotherapy that can exacerbate dream enactment behaviour.
Assuntos
Transtornos do Humor/epidemiologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Inquéritos e QuestionáriosRESUMO
Dual-task gait can be a useful biomarker for cognitive decline and a sensitive predictor of future neurodegeneration in certain clinical populations, such as patients with idiopathic rapid eye movement sleep behavior disorder. OBJECTIVES: The objective of this cross-sectional study was to determine the neural signature of dual-tasking deficits in idiopathic rapid eye movement sleep behavior disorder using a validated gait paradigm. METHODS: Fifty-eight participants (28 controls; 30 idiopathic rapid eye movement sleep behavior disorder patients) were recruited; 52 participants had functional MRI scans as they performed a validated dual-task virtual reality gait paradigm using foot pedals. Forty-one participants completed single- and dual-task "overground walking" on a pressure sensor carpet. RESULTS: Idiopathic rapid eye movement sleep behavior disorder patients showed deficits in dual-tasking (i.e., greater mean step time) compared to controls during "overground walking." Functional MRI revealed that idiopathic rapid eye movement sleep behavior disorder patients had reduced blood-oxygen-level-dependent signal change in the dorsal caudate nucleus, and significantly different corticostriatal functional connectivity patterns from controls, when dual-tasking in high versus low cognitive load. While controls showed greater connectivity between frontoparietal and motor networks, idiopathic rapid eye movement sleep behavior disorder patients exhibited less change in this connectivity as a function of cognitive load. CONCLUSIONS: These findings demonstrate evidence of dual-task gait deficits in idiopathic rapid eye movement sleep behavior disorder patients, underpinned by disrupted corticostriatal connectivity. Minimal differences in the level of functional connectivity between dual-tasking conditions of high and low cognitive load suggest that idiopathic rapid eye movement sleep behavior disorder patients recruit cognitive networks to control gait even when the cognitive demands are low. This may indicate a compensatory strategy for early cognitive decline in idiopathic rapid eye movement sleep behavior disorder. © 2020 International Parkinson and Movement Disorder Society.
Assuntos
Disfunção Cognitiva , Transtorno do Comportamento do Sono REM , Estudos Transversais , Marcha , Humanos , CaminhadaRESUMO
The vast majority of patients with idiopathic rapid eye movement sleep behaviour disorder will develop a neurodegenerative α-synuclein-related condition, such as Parkinson's disease or dementia with Lewy bodies. The pathology underlying dream enactment overlaps anatomically with the brainstem regions that regulate circadian core body temperature. Previously, nocturnal core body temperature regulation has been shown to be impaired in Parkinson's disease. However, no study to date has investigated nocturnal core body temperature changes in patients with idiopathic rapid eye movement sleep behaviour disorder, which may prove to be an early objective biomarker for α-synucleinopathies. Ten healthy controls, 15 patients with idiopathic rapid eye movement sleep behaviour disorder, 31 patients with Parkinson's disease and six patients with dementia with Lewy bodies underwent clinical assessment and nocturnal polysomnography with core body temperature monitoring. A validated cosinor method was utilised for core body temperature analysis. No differences in mesor, nadir or time of nadir were observed between groups. However, when compared with healthy controls, the amplitude of the nocturnal core body temperature (mesor minus nadir) was significantly reduced in patients with idiopathic rapid eye movement sleep behaviour disorder, Parkinson's disease with concurrent rapid eye movement sleep behaviour disorder and dementia with Lewy bodies (p < 0.001, p = 0.043 and p = 0.017, respectively). Importantly, this relationship was not seen in those patients with Parkinson's disease without rapid eye movement sleep behaviour disorder. In addition, there was a significant negative correlation between amplitude of the core body temperature and self-reported rapid eye movement sleep behaviour disorder symptoms. Changes in thermoregulatory circadian rhythm may be specifically associated with the pathology underlying rapid eye movement sleep behaviour disorder rather than simply that of α-synucleinopathy. These findings implicate thermoregulatory dysfunction as a potential early biomarker for development of rapid eye movement sleep behaviour disorder-associated neurodegeneration, and suggest that subpopulations with differing pathological underpinnings might exist in Parkinson's disease.
Assuntos
Biomarcadores/química , Temperatura Corporal/fisiologia , Doenças Neurodegenerativas/diagnóstico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Idiopathic REM sleep behaviour disorder (iRBD) is a powerful early sign of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. This provides an unprecedented opportunity to directly observe prodromal neurodegenerative states, and potentially intervene with neuroprotective therapy. For future neuroprotective trials, it is essential to accurately estimate phenoconversion rate and identify potential predictors of phenoconversion. This study assessed the neurodegenerative disease risk and predictors of neurodegeneration in a large multicentre cohort of iRBD. We combined prospective follow-up data from 24 centres of the International RBD Study Group. At baseline, patients with polysomnographically-confirmed iRBD without parkinsonism or dementia underwent sleep, motor, cognitive, autonomic and special sensory testing. Patients were then prospectively followed, during which risk of dementia and parkinsonsim were assessed. The risk of dementia and parkinsonism was estimated with Kaplan-Meier analysis. Predictors of phenoconversion were assessed with Cox proportional hazards analysis, adjusting for age, sex, and centre. Sample size estimates for disease-modifying trials were calculated using a time-to-event analysis. Overall, 1280 patients were recruited. The average age was 66.3 ± 8.4 and 82.5% were male. Average follow-up was 4.6 years (range = 1-19 years). The overall conversion rate from iRBD to an overt neurodegenerative syndrome was 6.3% per year, with 73.5% converting after 12-year follow-up. The rate of phenoconversion was significantly increased with abnormal quantitative motor testing [hazard ratio (HR) = 3.16], objective motor examination (HR = 3.03), olfactory deficit (HR = 2.62), mild cognitive impairment (HR = 1.91-2.37), erectile dysfunction (HR = 2.13), motor symptoms (HR = 2.11), an abnormal DAT scan (HR = 1.98), colour vision abnormalities (HR = 1.69), constipation (HR = 1.67), REM atonia loss (HR = 1.54), and age (HR = 1.54). There was no significant predictive value of sex, daytime somnolence, insomnia, restless legs syndrome, sleep apnoea, urinary dysfunction, orthostatic symptoms, depression, anxiety, or hyperechogenicity on substantia nigra ultrasound. Among predictive markers, only cognitive variables were different at baseline between those converting to primary dementia versus parkinsonism. Sample size estimates for definitive neuroprotective trials ranged from 142 to 366 patients per arm. This large multicentre study documents the high phenoconversion rate from iRBD to an overt neurodegenerative syndrome. Our findings provide estimates of the relative predictive value of prodromal markers, which can be used to stratify patients for neuroprotective trials.
Assuntos
Demência/fisiopatologia , Doença de Parkinson/fisiopatologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Idoso , Estudos de Coortes , Progressão da Doença , Feminino , Previsões/métodos , Humanos , Estimativa de Kaplan-Meier , Doença por Corpos de Lewy/fisiopatologia , Masculino , Pessoa de Meia-Idade , Transtornos Parkinsonianos/diagnóstico , Polissonografia , Sintomas Prodrômicos , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de RiscoRESUMO
Freezing of gait (FOG) in Parkinson's disease (PD) is frequently triggered upon passing through narrow spaces such as doorways. However, despite being common the neural mechanisms underlying this phenomenon are poorly understood. In our study, 19 patients who routinely experience FOG performed a previously validated virtual reality (VR) gait paradigm where they used foot-pedals to navigate a series of doorways. Patients underwent testing randomised between both their "ON" and "OFF" medication states. Task performance in conjunction with blood oxygenation level dependent (BOLD) signal changes between "ON" and "OFF" states were compared within each patient. Specifically, as they passed through a doorway in the VR environment patients demonstrated significantly longer "footstep" latencies in the OFF state compared to the ON state. As seen clinically in FOG this locomotive delay was primarily triggered by narrow doorways rather than wide doorways. Functional magnetic resonance imaging revealed that footstep prolongation on passing through doorways was associated with selective hypoactivation in the presupplementary motor area (pSMA) bilaterally. Task-based functional connectivity analyses revealed that increased latency in response to doorways was inversely correlated with the degree of functional connectivity between the pSMA and the subthalamic nucleus (STN) across both hemispheres. Furthermore, increased frequency of prolonged footstep latency was associated with increased connectivity between the bilateral STN. These findings suggest that the effect of environmental cues on triggering FOG reflects a degree of impaired processing within the pSMA and disrupted signalling between the pSMA and STN, thus implicating the "hyperdirect" pathway in the generation of this phenomenon.
Assuntos
Encéfalo/diagnóstico por imagem , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Idoso , Encéfalo/fisiopatologia , Feminino , Transtornos Neurológicos da Marcha/epidemiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Doença de Parkinson/epidemiologia , Doença de Parkinson/fisiopatologiaRESUMO
BACKGROUND: Although motor abnormalities have been flagged as potentially the most sensitive and specific clinical features for predicting the future progression to Parkinson's disease, little work has been done to characterize gait and balance impairments in idiopathic rapid eye movement sleep behavior disorder (iRBD). OBJECTIVE: The objective of this study was to quantitatively determine any static balance as well as gait impairments across the 5 independent domains of gait in polysomnography-confirmed iRBD patients using normal, fast-paced, and dual-task walking conditions. METHODS: A total of 38 participants (24 iRBD, 14 healthy controls) completed the following 5 different walking trials across a pressure sensor carpet: (1) normal pace, (2) fast pace, (3) while counting backward from 100 by 1s, (4) while naming as many animals as possible, (5) while subtracting 7s from 100. RESULTS: Although no gait differences were found between the groups during normal walking, there were significant differences between groups under the fast-paced and dual-task gait conditions. Specifically, in response to the dual tasking, healthy controls widened their step width without changing step width variability, whereas iRBD patients did not widen their step width but, rather, significantly increased their step width variability. Similarly, changes between the groups were observed during fast-paced walking wherein the iRBD patients demonstrated greater step length asymmetry when compared with controls. CONCLUSIONS: This study demonstrates that iRBD patients have subtle gait impairments, which likely reflect early progressive degeneration in brainstem regions that regulate both REM sleep and gait coordination. Such gait assessments may be useful as a diagnostic preclinical screening tool for future fulminant gait abnormalities for trials of disease-preventive agents. © 2019 International Parkinson and Movement Disorder Society.
Assuntos
Transtornos Neurológicos da Marcha/etiologia , Transtorno do Comportamento do Sono REM/complicações , Vertigem/etiologia , Adulto , Idoso , Cognição , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Polissonografia , Equilíbrio Postural , Desempenho PsicomotorRESUMO
Freezing of gait is a complex, heterogeneous, and highly variable phenomenon whose pathophysiology and neural signature remains enigmatic. Evidence suggests that freezing is associated with impairments across cognitive, motor and affective domains; however, most research to date has focused on investigating one axis of freezing of gait in isolation. This has led to inconsistent findings and a range of different pathophysiological models of freezing of gait, due in large part to the tendency for studies to investigate freezing of gait as a homogeneous entity. To investigate the neural mechanisms of this heterogeneity, we used an established virtual reality paradigm to elicit freezing behaviour in 41 Parkinson's disease patients with freezing of gait and examined individual differences in the component processes (i.e. cognitive, motor and affective function) that underlie freezing of gait in conjunction with task-based functional MRI. First, we combined three unique components of the freezing phenotype: impaired set-shifting ability, step time variability, and self-reported anxiety and depression in a principal components analysis to estimate the severity of freezing behaviour with a multivariate approach. By combining these measures, we were then able to interrogate the pattern of task-based functional connectivity associated with freezing (compared to normal foot tapping) in a sub-cohort of 20 participants who experienced sufficient amounts of freezing during task functional MRI. Specifically, we used the first principal component from our behavioural analysis to classify patterns of functional connectivity into those that were associated with: (i) increased severity; (ii) increased compensation; or (iii) those that were independent of freezing severity. Coupling between the cognitive and limbic networks was associated with 'worse freezing severity', whereas anti-coupling between the putamen and the cognitive and limbic networks was related to 'increased compensation'. Additionally, anti-coupling between cognitive cortical regions and the caudate nucleus were 'independent of freezing severity' and thus may represent common neural underpinnings of freezing that are unaffected by heterogenous factors. Finally, we related these connectivity patterns to each of the individual components (cognitive, motor, affective) in turn, thus exposing latent heterogeneity in the freezing phenotype, while also identifying critical functional network signatures that may represent potential targets for novel therapeutic intervention. In conclusion, our findings provide confirmatory evidence for systems-level impairments in the pathophysiology of freezing of gait and further advance our understanding of the whole-brain deficits that mediate symptom expression in Parkinson's disease.
Assuntos
Encéfalo/diagnóstico por imagem , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Idoso , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Oxigênio/sangue , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Inquéritos e Questionários , Interface Usuário-ComputadorRESUMO
BACKGROUND: The purpose of this study is to identify and characterize subtypes of freezing of gait by using a novel questionnaire designed to delineate freezing patterns based on self-reported and behavioral gait assessment. METHODS: A total of 41 Parkinson's patients with freezing completed the Characterizing Freezing of Gait questionnaire that identifies situations that exacerbate freezing. This instrument underwent examination for construct validity and internal consistency, after which a data-driven clustering approach was employed to identify distinct patterns amongst individual responses. Behavioral freezing assessments in both dopaminergic states were compared across 3 identified subgroups. RESULTS: This novel questionnaire demonstrated construct validity (severity scores correlated with percentage of time frozen; r = 0.54) and internal consistency (Cronbach's α = .937), and thus demonstrated promising utility for identifying patterns of freezing that are independently related to motor, anxiety, and attentional impairments. CONCLUSIONS: Patients with freezing may be dissociable based on underlying neurobiological underpinnings that would have significant implications for targeting future treatments. © 2018 International Parkinson and Movement Disorder Society.
Assuntos
Reação de Congelamento Cataléptica/fisiologia , Transtornos Neurológicos da Marcha , Doença de Parkinson/complicações , Idoso , Análise por Conglomerados , Feminino , Transtornos Neurológicos da Marcha/classificação , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Índice de Gravidade de Doença , Inquéritos e Questionários , CaminhadaRESUMO
BACKGROUND: Freezing of gait is a disabling symptom of Parkinson's disease that ultimately affects approximately 80% of patients, yet very little research has focused on predicting the onset of freezing of gait and tracking the longitudinal progression of symptoms prior to its onset. The objective of the current study was to examine longitudinal data spanning the transition period when patients with PD developed freezing of gait to identify symptoms that may precede freezing and create a prediction model that identifies those "at risk" for developing freezing of gait in the year to follow. METHODS: Two hundred and twenty-one patients with PD were divided into 3 groups (88 nonfreezers, 41 transitional freezers, and 92 continuing freezers) based on their responses to the validated Freezing of Gait-Questionnaire item 3 at baseline and follow-up. Critical measures across motor, cognitive, mood, and sleep domains were assessed at 2 times approximately 1 year apart. RESULTS: A logistic regression model that included age, disease duration, gait symptoms, motor phenotype, attentional set-shifting, and mood measures could predict with 70% and 90% accuracy those patients who would and would not develop, respectively, freezing of gait over the next year. Notably, the Freezing of Gait-Questionnaire total and the anxiety section of the Hospital Anxiety and Depression Scale were the strongest predictors and alone could significantly predict if one might develop freezing of gait in the next 15 months with 82% accuracy. CONCLUSIONS: Our results suggest that it is possible to identify the majority of patients who will develop freezing of gait in the following year, potentially allowing targeted interventions to delay or possibly even prevent the onset of freezing. © 2017 International Parkinson and Movement Disorder Society.
Assuntos
Reação de Congelamento Cataléptica/fisiologia , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Doença de Parkinson/complicações , Sintomas Afetivos/diagnóstico , Sintomas Afetivos/etiologia , Idoso , Idoso de 80 Anos ou mais , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Valor Preditivo dos Testes , Análise de Regressão , Estudos Retrospectivos , Índice de Gravidade de Doença , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/etiologiaRESUMO
Threatening situations lead to observable gait deficits in individuals with Parkinson's disease (PD) who suffer from high trait anxiety levels. The specific characteristics of gait that are affected appear to be similar to behaviors observed while walking during a dual-task (DT) condition. Yet, it remains unclear whether anxiety is similar to a cognitive load. If it were, then those with PD who have high trait anxiety might be expected to be more susceptible to DT interference during walking. Thus, the overall aim of this study was to evaluate whether trait anxiety influences gait during single-task (ST) and DT walking. Seventy participants (high-anxiety PD [HA-PD], N=26; low-anxiety PD [LA-PD], N=26; healthy control [HC], N=18) completed three ST and three DT walking trials on a data-collecting carpet. The secondary task consisted of digit monitoring while walking. Results showed that during both ST and DT gait, the HA-PD group demonstrated significant reductions in walking speed and step length, as well as increased step length variability and step time variability compared with healthy controls and the LA-PD group. Notably, ST walking in the HA-PD group resembled (i.e., it was not significantly different from) the gait behaviors seen during a DT in the LA-PD and HC groups. These results suggest that trait anxiety may consume processing resources and limit the ability to compensate for gait impairments in PD.
Assuntos
Ansiedade/etiologia , Transtornos Neurológicos da Marcha/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/psicologia , Idoso , Idoso de 80 Anos ou mais , Ansiedade/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Caminhada/fisiologiaRESUMO
Impairments in motor automaticity cause patients with Parkinson's disease to rely on attentional resources during gait, resulting in greater motor variability and a higher risk of falls. Although dopaminergic circuitry is known to play an important role in motor automaticity, little evidence exists on the neural mechanisms underlying the breakdown of locomotor automaticity in Parkinson's disease. This impedes clinical management and is in great part due to mobility restrictions that accompany the neuroimaging of gait. This study therefore utilized a virtual reality gait paradigm in conjunction with functional MRI to investigate the role of dopaminergic medication on lower limb motor automaticity in 23 patients with Parkinson's disease that were measured both on and off dopaminergic medication. Participants either operated foot pedals to navigate a corridor ('walk' condition) or watched the screen while a researcher operated the paradigm from outside the scanner ('watch' condition), a setting that controlled for the non-motor aspects of the task. Step time variability during walk was used as a surrogate measure for motor automaticity (where higher variability equates to reduced automaticity), and patients demonstrated a predicted increase in step time variability during the dopaminergic "off" state. During the "off" state, subjects showed an increased blood oxygen level-dependent response in the bilateral orbitofrontal cortices (walk>watch). To estimate step time variability, a parametric modulator was designed that allowed for the examination of brain regions associated with periods of decreased automaticity. This analysis showed that patients on dopaminergic medication recruited the cerebellum during periods of increasing variability, whereas patients off medication instead relied upon cortical regions implicated in cognitive control. Finally, a task-based functional connectivity analysis was conducted to examine the manner in which dopamine modulates large-scale network interactions during gait. A main effect of medication was found for functional connectivity within an attentional motor network and a significant condition by medication interaction for functional connectivity was found within the striatum. Furthermore, functional connectivity within the striatum correlated strongly with increasing step time variability during walk in the off state (r=0.616, p=0.002), but not in the on state (r=-0.233, p=0.284). Post-hoc analyses revealed that functional connectivity in the dopamine depleted state within an orbitofrontal-striatal limbic circuit was correlated with worse step time variability (r=0.653, p<0.001). Overall, this study demonstrates that dopamine ameliorates gait automaticity in Parkinson's disease by altering striatal, limbic and cerebellar processing, thereby informing future therapeutic avenues for gait and falls prevention.
Assuntos
Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Dopamina/fisiologia , Marcha , Doença de Parkinson/fisiopatologia , Atenção/fisiologia , Mapeamento Encefálico , Humanos , Levodopa/uso terapêutico , Imageamento por Ressonância Magnética , Atividade Motora , Doença de Parkinson/tratamento farmacológico , Realidade VirtualRESUMO
In order to understand how dopamine modulates the effect of anxiety on gait, the goal of this study was to use virtual reality to provoke anxiety in Parkinson's disease (PD) (in both ON and OFF states) and quantify its effect on gait. Seventeen participants with PD and 20 healthy age-matched controls were instructed to walk in a virtual environment in two anxiety-provoking conditions: (i) across a plank that was located on the GROUND and (ii) across an ELEVATED plank. All participants with PD completed this experiment in both the ON and OFF states, and were then striated into groups based on baseline trait anxiety scores for further analyses. Anxiety (skin conductance and self-report) and spatiotemporal aspects of gait were measured. Overall, the ELEVATED condition resulted in greater skin conductance levels and self-reported anxiety levels. Additionally, all participants demonstrated slower gait with increased step-to-step variability when crossing the ELEVATED plank compared with the plank on the GROUND. The results showed that dopaminergic treatment selectively improved gait in only the highly anxious PD group, by significantly improving velocity, step length, step time and step-to-step variability specifically when walking across the ELEVATED plank (ON vs. OFF comparison). In conclusion, only highly trait anxious participants with PD benefitted from dopaminergic treatment, specifically when walking in the anxiety-provoking environment. Improvements to gait during anxious walking might be a result of dopaminergic medication acting in two ways: (i) improving the basal ganglia's capacity to process information and (ii) reducing the load from anxiety and subsequently making more resources available to effectively process other competing inputs.
Assuntos
Ansiedade/complicações , Di-Hidroxifenilalanina/uso terapêutico , Dopaminérgicos/uso terapêutico , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Doença de Parkinson/complicações , Idoso , Ansiedade/diagnóstico , Ansiedade/etiologia , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Resposta Galvânica da Pele , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Autorrelato , Interface Usuário-ComputadorRESUMO
Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.
Assuntos
Percepção de Distância/fisiologia , Retroalimentação Sensorial/fisiologia , Doença de Parkinson/psicologia , Percepção Visual/fisiologia , Caminhada/fisiologia , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Interface Usuário-ComputadorRESUMO
BACKGROUND: Recent research has argued that removal of relevant sensory information during the planning and control of simple, self-paced walking can result in increased demand on central processing resources in Parkinson's disease (PD). However, little is known about more complex gait tasks that require planning of gait adaptations to cross over an obstacle in PD. METHODS: In order to understand the interaction between availability of visual information relevant for self-motion and cognitive load, the current study evaluated PD participants and healthy controls while walking toward and stepping over an obstacle in three visual feedback conditions: (i) no visual restrictions; (ii) vision of the obstacle and their lower limbs while in complete darkness; (iii) vision of the obstacle only while in complete darkness; as well as two conditions including a cognitive load (with a dual task versus without a dual task). Each walk trial was divided into an early and late phase to examine changes associated with planning of step adjustments when approaching the obstacle. RESULTS: Interactions between visual feedback and dual task conditions during the obstacle approach were not significant. Patients with PD had greater deceleration and step time variability in the late phase of the obstacle approach phase while walking in both dark conditions compared to control participants. Additionally, participants with PD had a greater number of obstacle contacts when vision of their lower limbs was not available specifically during the dual task condition. Dual task performance was worse in PD compared to healthy control participants, but notably only while walking in the dark regardless of visual feedback. CONCLUSIONS: These results suggest that reducing visual feedback while approaching an obstacle shifts processing to somatosensory feedback to guide movement which imposes a greater demand on planning resources. These results are key to fully understanding why trips and falls occur in those with PD.