Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(8): 3781-3794, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38346445

RESUMO

Materials with an extreme lattice thermal conductivity (κl) are indispensable for thermal energy management applications. Layered materials provide an avenue for designing such functional materials due to their intrinsic bonding heterogeneity. Therefore, a microscopic understanding of the crystal structure, bonding, anharmonic lattice dynamics, and phonon transport properties is critically important for layered materials. Alkaline-earth halofluorides exhibit anisotropy from their layered crystal structure, which is strongly determined by axial bond(s), and it is attributed to the large axial ratio (c/a > 2) for CaBrF, CaIF, and SrIF, in which Br/I acts as a rattler, as evidenced from potential energy curves and phonon density of states. The low axial (c/a) ratio leads to relatively isotropic κl values in the BaXF (X = Cl, Br, I) series. MXF (M = Ca, Sr, Ba) compounds exhibit highly anisotropic (a large phonon transport anisotropy ratio of 10.95 for CaIF) to isotropic (a small phonon transport anisotropy ratio of 1.49 for BaBrF) κl values despite their iso-structure. Moreover, ultralow κl (<1 W/m K) values have been predicted for CaBrF, CaIF, and SrIF in the out-of-plane direction due to weak van der Waals (vdWs) bonding. Overall, this comprehensive study on MXF compounds provides insights into designing low κl layered materials with a large axial ratio by fine-tuning out-of-plane bonding from ionic to vdWs bonding.

2.
J Synchrotron Radiat ; 30(Pt 4): 671-685, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318367

RESUMO

An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.


Assuntos
Diamante , Lasers , Difração de Raios X , Pressão , Raios X
3.
J Phys Chem A ; 122(29): 6109-6117, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29969267

RESUMO

Capture of highly volatile radioactive iodine is a promising application of metal-organic frameworks (MOFs), thanks to their high porosity with flexible chemical architecture. Specifically, strong charge-transfer binding of iodine to the framework enables efficient and selective iodine uptake as well as its long-term storage. As such, precise knowledge of the electronic structure of iodine is essential for a detailed modeling of the iodine sorption process, which will allow for rational design of iodophilic MOFs in the future. Here we probe the electronic structure of iodine in MOFs at variable iodine···framework interaction by Raman and optical absorption spectroscopy at high pressure ( P). The electronic structure of iodine in the straight channels of SBMOF-1 (Ca- sdb, sdb = 4,4'-sulfonyldibenzoate) is modified irreversibly at P > 3.4 GPa by charge transfer, marking a polymerization of iodine molecules into a 1D polyiodide chain. In contrast, iodine in the sinusoidal channels of SBMOF-3 (Cd- sdb) retains its molecular (I2) character up to at least 8.4 GPa. Such divergent high-pressure behavior of iodine in the MOFs with similar port size and chemistry illustrates adaptations of the electronic structure of iodine to channel topology and strength of the iodine···framework interaction, which can be used to tailor iodine-immobilizing MOFs.

4.
Inorg Chem ; 52(14): 8067-73, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23815067

RESUMO

High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.

5.
ACS Appl Mater Interfaces ; 14(36): 40738-40748, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36053500

RESUMO

Understanding the interplay between various design strategies (for instance, bonding heterogeneity and lone pair induced anharmonicity) to achieve ultralow lattice thermal conductivity (κl) is indispensable for discovering novel functional materials for thermal energy applications. In the present study, we investigate layered PbXF (X = Cl, Br, I), which offers bonding heterogeneity through the layered crystal structure, anharmonicity through the Pb2+ 6s2 lone pair, and phonon softening through the mass difference between F and Pb/X. The weak interlayer van der Waals bonding and the strong intralayer ionic bonding with partial covalent bonding result in a significant bonding heterogeneity and a poor phonon transport in the out-of-plane direction. Large average Grüneisen parameters (≥2.5) demonstrate strong anharmonicity. The computed phonon dispersions show flat bands, which suggest short phonon lifetimes, especially for PbIF. Enhanced Born effective charges are due to cross-band-gap hybridization. PbIF shows lattice instability at a small volume expansion of 0.1%. The κl values obtained by the two channel transport model are 20-50% higher than those obtained by solving the Boltzmann transport equation. Overall, ultralow κl values are found at 300 K, especially for PbIF. We propose that the interplay of bonding heterogeneity, lone pair induced anharmonicity, and constituent elements with high mass difference aids the design of low κl materials for thermal energy applications.

6.
Inorg Chem ; 50(22): 11291-3, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22007692

RESUMO

A new type of disordered substitution alloy of Sb and Te at above 15.1 GPa was discovered by performing in situ high-pressure angle-dispersive X-ray diffraction experiments on antimony telluride (Sb(2)Te(3)), a topological insulator and thermoelectric material, at room temperature. In this disordered substitution alloy, Sb(2)Te(3) crystallizes into a monoclinic structure with the space group C2/m, which is different from the corresponding high-pressure phase of the similar isostructural compound Bi(2)Te(3). Above 19.8 GPa, Sb(2)Te(3) adopts a body-centered-cubic structure with the disordered atomic array in the crystal lattice. The in situ high-pressure experiments down to about 13 K show that Sb(2)Te(3) undergoes the same phase-transition sequence with increasing pressure at low temperature, with almost the same phase-transition pressures.

7.
J Phys Chem Lett ; 12(12): 3246-3252, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764078

RESUMO

The ultrafast synthesis of ε-Fe3N1+x in a diamond-anvil cell (DAC) from Fe and N2 under pressure was observed using serial exposures of an X-ray free electron laser (XFEL). When the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the estimated sample temperature at the delay time was above 1400 K, confirmed by in situ transformation of α- to γ-iron. Ultimately, the Fe and N2 reacted uniformly throughout the beam path to form Fe3N1.33, as deduced from its established equation of state (EOS). We thus demonstrate that the activation energy provided by intense X-ray exposures in an XFEL can be coupled with the source time structure to enable exploration of the time-dependence of reactions under high-pressure conditions.

8.
J Phys Chem B ; 123(45): 9654-9667, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31638809

RESUMO

As a candidate of Martian salts, calcium perchlorate [Ca(ClO4)2] has the potential to stabilize liquid water on the Martian surface because of its hygroscopicity and low freezing temperature when forming aqueous solution. These two properties of electrolytes in general have been suggested to result from the specific cation-anion-water interaction (ion pairing) that interrupts the structure of solvent water. To investigate how this concentration-dependent and temperature-dependent ion pairing process in aqueous Ca(ClO4)2 solution leads to its high hygroscopic property and the extreme low eutectic temperature, we have conducted two sets of experiments. First, the effects of concentration on aqueous calcium perchlorate from 3 to 7.86 m on ion pairing were investigated using Raman spectroscopy. Deconvolution of the Raman symmetric stretching band (ν1) of ClO4- showed the enhanced formation of solvent-shared ion pairs upon increasing salt concentration at room temperature. We have confirmed that the low tendency of forming contact ion pairs in concentrated solution contributes to the high hygroscopicity of the salt. Second, the near eutectic samples were studied as a function of temperature by both combined differential scanning calorimetry-Raman spectroscopic experiments and in situ X-ray diffraction. The number of solvent-shared ion pairs was found to increase with decreasing temperature when cooled below the temperature of maximum density of the solution, driven by a change in water toward an ice-like structure in the supercooled regime. The massive presence of solvent-shared ion pairs in turn limits the development of the long-range order in the tetrahedral networks of water molecules, which is responsible for the extremely low eutectic point and deep supercooling effects observed in the Ca(ClO4)2-H2O system.

9.
Sci Rep ; 6: 21434, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902122

RESUMO

We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 µm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.

10.
J Phys Condens Matter ; 27(48): 485303, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26570982

RESUMO

The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS) of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. The internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au.

11.
J Phys Chem Lett ; 6(10): 1790-4, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26263249

RESUMO

Enhancement of adsorption capacity and separation of radioactive Xe/Kr at room temperature and above is a challenging problem. Here, we report a detailed structural refinement and analysis of the synchrotron X-ray powder diffraction data of Ni-DODBC metal organic framework with in situ Xe and Kr adsorption at room temperature and above. Our results reveal that Xe and Kr adsorb at the open metal sites, with adsorption geometries well reproduced by DFT calculations. The measured temperature-dependent adsorption capacity of Xe is substantially larger than that for Kr, indicating the selectivity of Xe over Kr and is consistent with the more negative adsorption energy (dominated by van der Waals dispersion interactions) predicted from DFT. Our results reveal critical structural and energetic information about host-guest interactions that dictate the selective adsorption mechanism of these two inert gases, providing guidance for the design and synthesis of new MOF materials for the separation of environmentally hazardous gases from nuclear reprocessing applications.

13.
IUCrJ ; 1(Pt 6): 590-603, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25485138

RESUMO

The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.

14.
J Phys Condens Matter ; 25(12): 125602, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23420458

RESUMO

The phase transition, amorphization, and crystallization behaviors of the topological insulator bismuth selenide (Bi2Se3) were discovered by performing in situ high-pressure angle-dispersive x-ray diffraction experiments during an increasing, decreasing, and recycling pressure process. In the compression process, Bi2Se3 transforms from the original rhombohedral structure (phase I(A)) to a monoclinic structure (phase II) at about 10.4 GPa, and further to a body-centered tetragonal structure (phase III) at about 24.5 GPa. When releasing pressure to ambient conditions after the complete transformation from phase II to III, Bi2Se3 becomes an amorphous solid (AM). In the relaxation process from this amorphous state, Bi2Se3 starts crystallizing into an orthorhombic structure (phase I(B)) about five hours after releasing the pressure to ambient. A review of the pressure-induced phase transition behaviors of A2B3-type materials composed from the V and VI group elements is presented.

15.
Science ; 316(5832): 1726-9, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17525301

RESUMO

Despite the ubiquity of ferrihydrite in natural sediments and its importance as an industrial sorbent, the nanocrystallinity of this iron oxyhydroxide has hampered accurate structure determination by traditional methods that rely on long-range order. We uncovered the atomic arrangement by real-space modeling of the pair distribution function (PDF) derived from direct Fourier transformation of the total x-ray scattering. The PDF for ferrihydrite synthesized with the use of different routes is consistent with a single phase (hexagonal space group P6(3)mc; a = approximately 5.95 angstroms, c = approximately 9.06 angstroms). In its ideal form, this structure contains 20% tetrahedrally and 80% octahedrally coordinated iron and has a basic structural motif closely related to the Baker-Figgis delta-Keggin cluster. Real-space fitting indicates structural relaxation with decreasing particle size and also suggests that second-order effects such as internal strain, stacking faults, and particle shape contribute to the PDFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA